ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved indirect control of nuclear spins in diamond NV centers

56   0   0.0 ( 0 )
 نشر من قبل Jingfu Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid quantum registers consisting of different types of qubits offer a range of advantages as well as challenges. The main challenge is that some types of qubits react only slowly to external control fields, thus considerably slowing down the information processing operations. One promising approach that has been tested in a number of cases is to use indirect control, where external fields are applied only to qubits that interact strongly with resonant excitation pulses. Here we use this approach to indirectly control the nuclear spins of an NV center, using microwave pulses to drive the electron spin, combined with free precession periods optimized for generating logical gate operations on the nuclear spins. The scheme provides universal control and we present two typical applications: polarizing the nuclear spin and measuring nuclear spin free induction decay signals, both without applying radio-frequency pulses. This scheme is versatile as it can be implemented over a wide range of magnetic field strengths and at any temperature.

قيم البحث

اقرأ أيضاً

169 - V. Jacques , P. Neumann , J. Beck 2009
We report a versatile method to efficiently polarize single nuclear spins in diamond, which is based on optical pumping of a single NV color center and mediated by a level-anti crossing in its excited state. A nuclear spin polarization higher than 98 % is achieved at room temperature for the 15N nuclear spin associated to the NV center, corresponding to $mu$K effective nuclear spin temperature. We then show simultaneous deterministic initialization of two nuclear spins (13C and 15N) in close vicinity to a NV defect. Such robust control of nuclear spin states is a key ingredient for further scaling up of nuclear-spin based quantum registers in diamond.
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diam ond surface step by step, which enable us to trace the evolution of the number of NV centers remained in the chip and to study the depth dependence of coherence times of NV centers with the diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in their last about 22 nm before they finally disappeared, revealing a critical depth for the influence of rapid fluctuating surface spin bath. By monitoring the coherence time variation with depth, we could make a shallow NV center with long coherence time for detecting external spins with high sensitivity.
We present a scheme to generate entangled photons using the NV centers in diamond. We show how the long-lived nuclear spin in diamond can mediate entanglement between multiple photons thereby increasing the length of entangled photon string. With the proposed scheme one could generate both n-photon GHZ and cluster states. We present an experimental scheme realizing the same and estimating the rate of entanglement generation both in the presence and absence of a cavity.
High-fidelity projective readout of a qubits state in a single experimental repetition is a prerequisite for various quantum protocols of sensing and computing. Achieving single-shot readout is challenging for solid-state qubits. For Nitrogen-Vacancy (NV) centers in diamond, it has been realized using nuclear memories or resonant excitation at cryogenic temperature. All of these existing approaches have stringent experimental demands. In particular, they require a high efficiency of photon collection, such as immersion optics or all-diamond micro-optics. For some of the most relevant applications, such as shallow implanted NV centers in a cryogenic environment, these tools are unavailable. Here we demonstrate an all-optical spin readout scheme that achieves single-shot fidelity even if photon collection is poor (delivering less than 10$^3$ clicks/second). The scheme is based on spin-dependent resonant excitation at cryogenic temperature combined with spin-to-charge conversion, mapping the fragile electron spin states to the stable charge states. We prove this technique to work on shallow implanted NV centers as they are required for sensing and scalable NV-based quantum registers.
102 - Jiwon Yun , Kiho Kim , 2019
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxatio n and achieve a polarity-tunable, fast nuclear polarization of degree higher than 85% at room temperature for remote 13C nuclear spins exhibiting hyperfine interaction strength with NV centers of the order of 600 kHz. We show with the aid of numerical simulation that the anisotropic hyperfine tensor components naturally provide a route to control spin mixing parameter so that highly efficient nuclear polarization is enabled through careful tuning of nuclear quantization axis by external magnetic field. We further discuss spin dynamics and wide applicability of this method to various target 13C nuclear spins around the NV center electron spin. The proposed control method demonstrates an efficient and versatile route to realize, for example, high-fidelity spin register initialization and quantum metrology using nuclear spin resources in solids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا