ﻻ يوجد ملخص باللغة العربية
The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their local thermodynamic and transport properties are deduced from the microscopic Hamiltonian dynamics. In particular, the Green-Kubo formulas are obtained for all the transport coefficients. The eight hydrodynamic modes and their dispersion relation are studied for general and cubic crystals. In the same twenty crystallographic classes as those compatible with piezoelectricity, cross effects coupling transport between linear momentum and heat or crystalline order are shown to split the degeneracy of damping rates for modes propagating in opposite generic directions.
We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (L
For a given thermodynamic system, and a given choice of coarse-grained state variables, the knowledge of a force-flux constitutive law is the basis for any nonequilibrium modeling. In the first paper of this series we established how, by a generaliza
Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an id
Understanding the rich spatial and temporal structures in nonequilibrium thermal environments is a major subject of statistical mechanics. Because universal laws, based on an ensemble of systems, are mute on an individual system, exploring nonequilib
Understanding the fluctuations by which phenomenological evolution equations with thermodynamic structure can be enhanced is the key to a general framework of nonequilibrium statistical mechanics. These fluctuations provide an idealized representatio