ﻻ يوجد ملخص باللغة العربية
The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950s, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.
For optimal application, pressure-sensitive adhesives must have rheological properties in between those of a viscoplastic solid and those of a viscoelastic liquid. Such adhesives can be produced by emulsion polymerisation, resulting in latex particle
In this paper, we propose a numerical model to describe the adhesive normal contact between a rigid spherical indenter and a viscoelastic rough substrate. The model accounts for dissipative process under the assumption that viscoelastic losses are lo
We investigate the rate-dependent fracture of vitrimers by conducting a tear test. Based on the relationship between the frac-ture energy and the thickness of vitrimer films, we, for the first time, obtain the intrinsic fracture energy and bulk dissi
The jamming transition in granular materials is well-known for exhibiting hysteresis, wherein the level of shear stress required to trigger flow is larger than that below which flow stops. Although such behavior is typically modeled as a simple non-m
The yielding of concentrated cohesive suspensions can be deformation-rate dependent. One consquence of this is that a single suspension can present in one several different ways, depending upon how it is tested, or more generally, how it is caused to