ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoscale modeling of the rheology of pressure sensitive adhesives through inclusion of transient forces

106   0   0.0 ( 0 )
 نشر من قبل Johan Padding
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For optimal application, pressure-sensitive adhesives must have rheological properties in between those of a viscoplastic solid and those of a viscoelastic liquid. Such adhesives can be produced by emulsion polymerisation, resulting in latex particles which are dispersed in water and contain long-chain acrylic polymers. When the emulsion is dried, the latex particles coalesce and an adhesive film is formed. The rheological properties of the dried samples are believed to be dominated by the interface regions between the original latex particles, but the relation between rheology and latex particle properties is poorly understood. In this paper we show that it is possible to describe the bulk rheology of a pressure-sensitive adhesive by means of a mesoscale simulation model. To reach experimental time and length scales, each latex particle is represented by just one simulated particle. The model is subjected to oscillatory shear flow and extensional flow. Simple order of magnitude estimates of the model parameters already lead to semi-quantitative agreement with experimental results. We show that inclusion of transient forces in the model, i.e. forces with memory of previous configurations, is essential to correctly predict the linear and nonlinear properties.



قيم البحث

اقرأ أيضاً

98 - Richard Villey 2015
The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950s, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness an d strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.
We study, by computer simulations, the role of different dissipation forces on the rheological properties of highly-dense particle-laden flows. In particular, we are interested in the close-packing limit (jamming) and the question if universal observ ables can be identified that do not depend on the details of the dissipation model. To this end, we define a simplified lubrication force and systematically vary the range $h_c$ of this interaction. For fixed $h_c$ a cross-over is seen from a Newtonian flow regime at small strain rates to inertia-dominated flow at larger strain rates. The same cross-over is observed as a function of the lubrication range $h_c$. At the same time, but only at high densities close to jamming, particle velocity as well as local density distributions are unaffected by changes in the lubrication range -- they are candidates for universal behavior. At densities away from jamming, this universality is lost: short-range lubrication forces lead to pronounced particle clustering, while longer-ranged lubrication does not. These findings highlight the importance of geometric packing constraints for particle motion -- independent of the specific dissipation model. With the free volume vanishing at random-close packing, particle motion is more and more constrained by the ever smaller amount of free space. On the other side, macroscopic rheological observables, as well as higher-order correlation functions retain the variability of the underlying dissipation model.
The rheology of cohesive granular materials, under a constant pressure condition, is studied using molecular dynamics simulations. Depending on the shear rate, pressure, and interparticle cohesiveness, the system exhibits four distinctive phases: uni form shear, oscillation, shear-banding, and clustering. The friction coefficient is found to increase with the inertial number, irrespective of the cohesiveness. The friction coefficient becomes larger for strong cohesion. This trend is explained by the anisotropies of the coordination number and angular distribution of the interparticle forces. In particular, we demonstrate that the second-nearest neighbors play a role in the rheology of cohesive systems.
Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a solidified state cannot be probed with conventional steady-stat e rheology because the stress distribution inside the material cannot be controlled with sufficient precision. Here we introduce and validate a method that overcomes this obstacle. Rapidly propagating shear fronts are generated and used to establish well-controlled local stress conditions that sweep across the material. Exploiting such transient flows, we are able to track how a dense suspension approaches its shear jammed state dynamically, and can quantitatively map out the onset stress for solidification in a state diagram.
We introduce a model gel system in which colloidal forces, structure, and rheology are measured by balancing the requirements of rheological and microscopy techniques with those of optical tweezers. Sterically stabilized poly(methyl methacrylate) (PM MA) colloids are suspended in cyclohexane (CH) and cyclohexyl bromide (CHB) with dilute polystyrene serving as a depletion agent. A solvent comprising of 37% weight fraction CH provides sufficient refractive index contrast to enable optical trapping, while maintaining good confocal imaging quality and minimal sedimentation effects on the bulk rheology. At this condition, and at a depletant concentration c = 8.64 mg/mL (c/c* = 0.81), results from optical trapping show that 50% of bonds rupture at 3.3 pN. The linear strain-dependent elastic modulus of the corresponding gel (volume fraction = 0.20) is G = 1.8 Pa, and the mean contact number of the particles in the gel structure is 5.4. These structural and rheological parameters are similar to colloidal gels that are weakly aggregating and cluster-like. Thus, the model gel yields a concomitant characterization of the interparticle forces, microstructure, and bulk rheology in a single experimental system, thereby introducing the simultaneous comparison of these experimental measures to models and simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا