ﻻ يوجد ملخص باللغة العربية
Here we study the effect of La doping in EuO thin films using SQUID magnetometry, muon spin rotation ($mu$SR), polarized neutron reflectivity (PNR), and density functional theory (DFT). The $mu$SR data shows that the La$_{0.15}$Eu$_{0.85}$O is homogeneously magnetically ordered up to its elevated $T_{rm C}$. It is concluded that bound magnetic polaron behavior does not explain the increase in $T_{rm C}$ and an RKKY-like interaction is consistent with the $mu$SR data. The estimation of the magnetic moment by DFT simulations concurs with the results obtained by PNR, showing a reduction of the magnetic moment per La$_{x}$Eu$_{1-x}$O for increasing lanthanum doping. This reduction of the magnetic moment is explained by the reduction of the number of Eu-4$f$ electrons present in all the magnetic interactions in EuO films. Finally, we show that an upwards shift of the Fermi energy with La or Gd doping gives rise to half-metallicity for doping levels as high as 3.2 %.
We present angle-resolved photoemission spectroscopy of Eu(1-x)Gd(x)O through the ferromagnetic metal-insulator transition. In the ferromagnetic phase, we observe Fermi surface pockets at the Brillouin zone boundary, consistent with density functiona
We explore the magnetically-ordered ground state of the isovalently-substituted Mott-insulator Y$_{1-x}$La$_{x}$TiO$_{3}$ for $x$ $leq$ 0.3 via single crystal growth, magnetometry, neutron diffraction, x-ray magnetic circular dichroism (XMCD), muon s
We report new zero-field muon spin relaxation and neutron spin echo measurements in ferromagnetic (FM) (La,Ca)MnO3 which taken together suggest two spatially separated regions in close proximity possessing very different Mn-ion spin dynamics. One reg
The correlation between magnetic properties and microscopic structural aspects in the diluted magnetic semiconductor Ge$_{1-x}$Mn$_{x}$Te is investigated by x-ray diffraction and magnetization as a function of the Mn concentration $x$. The occurrence
We investigated the magnetic properties of (La$_{1-x}$Ba$_{x}$)(Zn$_{1-x}$Mn$_{x}$)AsO with $x$ varying from 0.005 to 0.05 at an external magnetic field of 1000 Oe. For doping levels of $x$ $leq$ 0.01, the system remains paramagnetic down to the lowe