ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of the electronic structure and Fermi-surface reconstruction of Eu(1-x)Gd(x)O through the ferromagnetic metal-insulator transition

116   0   0.0 ( 0 )
 نشر من قبل Daniel Shai
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present angle-resolved photoemission spectroscopy of Eu(1-x)Gd(x)O through the ferromagnetic metal-insulator transition. In the ferromagnetic phase, we observe Fermi surface pockets at the Brillouin zone boundary, consistent with density functional theory, which predicts a half metal. Upon warming into the paramagnetic state, our results reveal a strong momentum-dependent evolution of the electronic structure, where the metallic states at the zone boundary are replaced by pseudogapped states at the Brillouin zone center due to the absence of magnetic long-range order of the Eu 4f moments.

قيم البحث

اقرأ أيضاً

In this study, we employ bulk electronic properties characterization and x-ray scattering/spectroscopy techniques to map the structural, magnetic and electronic properties of (Eu$_{1-x}$Ca$_{x}$)$_{2}$Ir$_{2}$O$_{7}$ as a function of Ca-doping. As ex pected, the metal-insulator transition temperature, $T_{MIT}$, decreases with Ca-doping until a metallic state is realized down to 2 K. In contrast, $T_{AFM}$ becomes decoupled from the MIT and (likely short-range) AFM order persists into the metallic regime. This decoupling is understood as a result of the onset of an electronically phase separated state, the occurrence of which seemingly depends on both synthesis method and rare earth site magnetism. PDF analysis suggests that electronic phase separation occurs without accompanying chemical phase segregation or changes in the short-range crystallographic symmetry while synchrotron x-ray diffraction confirms that there is no change in the long-range crystallographic symmetry. X-ray absorption measurements confirm the $J_{eff}$ = 1/2 character of (Eu$_{1-x}$Ca$_{x}$)$_{2}$Ir$_{2}$O$_{7}$. Surprisingly these measurements also indicate a net electron doping, rather than the expected hole doping, indicating a compensatory mechanism. Lastly, XMCD measurements show a weak Ir magnetic polarization that is largely unaffected by Ca-doping.
Here we study the effect of La doping in EuO thin films using SQUID magnetometry, muon spin rotation ($mu$SR), polarized neutron reflectivity (PNR), and density functional theory (DFT). The $mu$SR data shows that the La$_{0.15}$Eu$_{0.85}$O is homoge neously magnetically ordered up to its elevated $T_{rm C}$. It is concluded that bound magnetic polaron behavior does not explain the increase in $T_{rm C}$ and an RKKY-like interaction is consistent with the $mu$SR data. The estimation of the magnetic moment by DFT simulations concurs with the results obtained by PNR, showing a reduction of the magnetic moment per La$_{x}$Eu$_{1-x}$O for increasing lanthanum doping. This reduction of the magnetic moment is explained by the reduction of the number of Eu-4$f$ electrons present in all the magnetic interactions in EuO films. Finally, we show that an upwards shift of the Fermi energy with La or Gd doping gives rise to half-metallicity for doping levels as high as 3.2 %.
Dimensionality control in the LaNiO3 (LNO) heterostructure has attracted attention due to its two-dimensional (2D) electronic structure was predicted to have an orbital ordered insulating ground state, analogous to that of the parent compound of high -Tc cuprate superconductors [P. Hansmann et al., Phys. Rev. Lett. 103, 016401 (2009)]. Here, we directly measured the electronic structure of LNO ultrathin films using in situ angle-resolved photoemission spectroscopy (ARPES). We recognized the dimensional crossover of the electronic structure around 3-unit cells (UC)-thick LNO film and observed the orbital reconstruction. However, complete orbital ordering was not achieved. Instead, we observed that the Fermi surface nesting effect became strong in the 2D LNO ultrathin film. These results indicated that the orbital reconstruction should be described by taking into account the strong nesting effect to search for the novel phenomena, such as superconductivity in 2D LNO heterostructure. In addition, the APRES spectra showed that the Fermi surface existed down to a 1-UC-thick film, which showed insulating behavior in transport measurements. We suggested that the metal-insulator transition in the transport properties may originate from Anderson localization.
We present a study of the structure, the electric resistivity, the magnetic susceptibility, and the thermal expansion of La$_{1-x}$Eu$_x$CoO$_3$. LaCoO$_3$ shows a temperature-induced spin-state transition around 100 K and a metal-insulator transitio n around 500 K. Partial substitution of La$^{3+}$ by the smaller Eu$^{3+}$ causes chemical pressure and leads to a drastic increase of the spin gap from about 190 K in LaCoO$_3$ to about 2000 K in EuCoO$_3$, so that the spin-state transition is shifted to much higher temperatures. A combined analysis of thermal expansion and susceptibility gives evidence that the spin-state transition has to be attributed to a population of an intermediate-spin state with orbital order for $x<0.5$ and without orbital order for larger $x$. In contrast to the spin-state transition, the metal-insulator transition is shifted only moderately to higher temperatures with increasing Eu content, showing that the metal-insulator transition occurs independently from the spin-state distribution of the Co$^{3+}$ ions. Around the metal-insulator transition the magnetic susceptibility shows a similar increase for all $x$ and approaches a doping-independent value around 1000 K indicating that well above the metal-insulator transition the same spin state is approached for all $x$.
The interplay between non-trivial topological states of matter and strong electronic correlations is one of the most compelling open questions in condensed matter physics. Due to experimental challenges, there is an increasing desire to find more mic roscopic techniques to complement the results of more traditional experiments. In this work, we locally explore the Kondo insulator Sm$_{1-x}$Gd$_{x}$B$_{6}$ by means of electron spin resonance (ESR) of Gd$^{3+}$ ions at low temperatures. Our analysis reveals that the Gd$^{3+}$ ESR line shape shows an anomalous evolution as a function of temperature, wherein for highly dilute samples (x $approx$ 0.0002) the Gd$^{3+}$ ESR line shape changes from a localized ESR local moment character to a diffusive-like character. Upon manipulating the sample surface with a focused ion beam we demonstrate, in combination with electrical resistivity measurements, that the localized character of the Gd$^{3+}$ ESR line shape is recovered by increasing the penetration of the microwave in the sample. This provides compelling evidence for the contribution of surface or near-surface excitations to the relaxation mechanism in the Gd$^{3+}$ spin dynamics. Our work brings new insights into the importance of non-trivial surface excitations in ESR, opening new routes to be explored both theoretically and experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا