ﻻ يوجد ملخص باللغة العربية
The recent discovery of topological Kondo insulators has triggered renewed interest in the well-known Kondo insulator samarium hexaboride, which is hypothesized to belong to this family. In this Letter, we study the spin texture of the topologically protected surface states in such a topological Kondo insulator. In particular, we derive close relationships between (i) the form of the hybridization matrix at certain high-symmetry points, (ii) the mirror Chern numbers of the system, and (iii) the observable spin texture of the topological surface states. In this way, a robust classification of topological Kondo insulators and their surface-state spin texture is achieved. We underpin our findings with numerical calculations of several simplified and realistic models for systems like samarium hexaboride.
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
A fascinating type of symmetry-protected topological states of matter are topological Kondo insulators, where insulating behavior arises from Kondo screening of localized moments via conduction electrons, and non-trivial topology emerges from the str
Motivated by the observation of light surface states in SmB6, we examine the effects of surface Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results which show that the decoupling of the localized moments at
The topology of quantum systems has become a topic of great interest since the discovery of topological insulators. However, as a hallmark of the topological insulators, the spin Chern number has not yet been experimentally detected. The challenge to
Topological states of matter exhibit many novel properties due to the presence of robust topological invariants such as the Chern index. These global characteristics pertain to the system as a whole and are not locally defined. However, local topolog