ﻻ يوجد ملخص باللغة العربية
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a finite Fermi surface even when the chemical potential is pinned to the Dirac point energy. We illustrate how this can occur when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as `shadow surface states. We also show that for certain bulk hybridization the Fermi surface of the shadow states can become comparable to the extremal area of the unhybridized bulk bands. The `large Fermi surface of the shadow states is expected to lead to large-frequency quantum oscillations in the presence of an applied magnetic field. Consequently, shadow surface states provide an alternative to mechanisms involving bulk Landau-quantized levels or surface Kondo breakdown for anomalous magnetic quantum oscillations in topological Kondo insulators with tetragonal crystal symmetry.
Motivated by the observation of light surface states in SmB6, we examine the effects of surface Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results which show that the decoupling of the localized moments at
A fascinating type of symmetry-protected topological states of matter are topological Kondo insulators, where insulating behavior arises from Kondo screening of localized moments via conduction electrons, and non-trivial topology emerges from the str
Resistivities of heavy-fermion insulators typically saturate below a characteristic temperature $T^*$. For some, metallic surface states, potentially from a non-trivial bulk topology, are a likely source of residual conduction. Here, we establish an
We construct the symmetric-gapped surface states of a fractional topological insulator with electromagnetic $theta$-angle $theta_{em} = frac{pi}{3}$ and a discrete $mathbb{Z}_3$ gauge field. They are the proper generalizations of the T-pfaffian state
We construct a lattice model for a cubic Kondo insulator consisting of one spin-degenerate $d$ and $f$ orbital at each lattice site. The odd-parity hybridization between the two orbitals permits us to obtain various trivial and topological insulating