ﻻ يوجد ملخص باللغة العربية
Dirac semi-metals show a linear electronic dispersion in three dimension described by two copies of the Weyl equation, a theoretical description of massless relativistic fermions. At the surface of a crystal, the breakdown of fermion chirality is expected to produce topological surface states without any counterparts in high-energy physics nor conventional condensed matter systems, the so-called Fermi Arcs. Here we present Shubnikov-de Haas oscillations involving the Fermi Arc states in Focused Ion Beam prepared microstructures of Cd$_3$As$_2$. Their unusual magnetic field periodicity and dependence on sample thickness can be well explained by recent theoretical work predicting novel quantum paths weaving the Fermi Arcs together with chiral bulk states, forming Weyl orbits. In contrast to conventional cyclotron orbits, these are governed by the chiral bulk dynamics rather than the common momentum transfer due to the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.
Topological nodal-line semimetals with exotic quantum properties are characterized by symmetry-protected line-contact bulk band crossings in the momentum space. However, in most of identified topological nodal-line compounds, these topological non-tr
In topological Weyl semimetals, the low energy excitations are comprised of linearly dispersing Weyl fermions, which act as monopoles of Berry curvature in momentum space and result in topologically protected Fermi arcs on the surfaces. We propose th
A van der Waals coupled Weyl semimetal material NbIrTe4 is investigated by combining scanning tunneling microscopy/spectroscopy and first principles calculations. We observe a sharp peak in the tunneling conductance near the zero bias energy, and its
Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produc
As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohms law. Depending on the length scales of momentum conserving ($l_{MC}$) and relaxing ($l_{MR}$) electron scattering, and the device si