ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative high-harmonic generation in the three-dimensional Dirac semimetal Cd$_3$As$_2$

117   0   0.0 ( 0 )
 نشر من قبل Zhe Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produced via a three-step process of ionization, acceleration, and recollision by strong-field infrared laser. This mechanism has been intensively investigated in the extreme ultraviolet and soft X-ray regions, forming the basis of attosecond research. In solid-state materials, which are characterized by crystalline symmetry and strong interactions, yielding of harmonics has just recently been reported. The observed high-harmonic generation was interpreted with fundamentally different mechanisms, such as interband tunneling combined with dynamical Bloch oscillations, intraband thermodynamics and nonlinear dynamics, and many-body electronic interactions. Here, in a distinctly different context of three-dimensional Dirac semimetal, we report on experimental observation of high-harmonic generation up to the seventh order driven by strong-field terahertz pulses. The observed non-perturbative high-harmonic generation is interpreted as a generic feature of terahertz-field driven nonlinear intraband kinetics of Dirac fermions. We anticipate that our results will trigger great interest in detection, manipulation, and coherent control of the nonlinear response in the vast family of three-dimensional Dirac and Weyl materials.



قيم البحث

اقرأ أيضاً

131 - E. Uykur , R. Sankar , D. Schmitz 2017
We report a room-temperature optical reflectivity study performed on [112]-oriented Cd$_3$As$_2$ single crystals over a broad energy range under external pressure up to 10 GPa. The abrupt drop of the band dispersion parameter ($z$-parameter) and the interruption of the gradual redshift of the bandgap at $sim$4~GPa confirms the structural phase transition from a tetragonal to a monoclinic phase in this material. The pressure-induced increase of the overall optical conductivity at low energies and the continuous redshift of the high-energy bands indicate that the system evolves towards a topologically trivial metallic state, although a complete closing of the band gap could not be observed in the studied pressure range. Furthermore, a detailed investigation of the low-pressure regime suggests the possible existence of an intermediate state between 2 and 4~GPa , that might be a precursor of the structural phase transition or due to the lifted degeneracy of the Dirac nodes. Several optical parameters show yet another anomaly at 8~GPa, where low-temperature superconductivity was found in an earlier study.
Thermoelectric materials can be used to convert heat to electric power through the Seebeck effect. We study magneto-thermoelectric figure of merit (ZT) in three-dimensional Dirac semimetal Cd$_3$As$_2$ crystal. It is found that enhancement of power f actor and reduction of thermal conductivity can be realized at the same time through magnetic field although magnetoresistivity is greatly increased. ZT can be highly enhanced from 0.17 to 1.1 by more than six times around 350 K under a perpendicular magnetic field of 7 Tesla. The huge enhancement of ZT by magnetic field arises from the linear Dirac band with large Fermi velocity and the large electric thermal conductivity in Cd$_3$As$_2$. Our work paves a new way to greatly enhance the thermoelectric performance in the quantum topological materials.
Time-reversal broken Weyl semimetals have attracted much attention recently, but certain aspects of their behavior, including the evolution of their Fermi surface topology and anomalous Hall conductivity with Fermi-level position, have remained under explored. A promising route to obtain such materials may be to start with a nonmagnetic Dirac semimetal and break time-reversal symmetry via magnetic doping or magnetic proximity. Here we explore this scenario in the case of the Dirac semimetal Cd$_{3}$As$_{2}$, based on first-principles density-functional calculations and subsequent low-energy modeling of Cd$_{3}$As$_{2}$ in the presence of a Zeeman field applied along the symmetry axis. We clarify how each four$-$fold degenerate Dirac node splits into four Weyl nodes, two with chirality $pm 1$ and two higher-order nodes with chirality $pm 2$. Using a minimal kdotp model Hamiltonian whose parameters are fit to the first-principles calculations, we detail the evolution of the Fermi surfaces and their Chern numbers as the Fermi energy is scanned across the region of the Weyl nodes at fixed Zeeman field. We also compute the intrinsic anomalous Hall conductivity as a function of Fermi-level position, finding a characteristic inverted-dome structure. Cd$_{3}$As$_{2}$ is especially well suited to such a study because of its high mobility, but the qualitative behavior revealed here should be applicable to other Dirac semimetals as well.
164 - A. Pariari , N. Khan , R. Singha 2015
To probe the charge scattering mechanism in Cd$_{3}$As$_{2}$ single crystal, we have analyzed the temperature and magnetic field dependence of the Seebeck coefficient ($S$). The large saturation value of $S$ at high field clearly demonstrates the lin ear energy dispersion of three-dimensional Dirac fermion. A wide tunability of the charge scattering mechanism has been realized by varying the strength of the magnetic field and carrier density via In doping. With the increase in magnetic field, the scattering time crosses over from being nearly energy independent to a regime of linear dependence. On the other hand, the scattering time enters into the inverse energy-dependent regime and the Fermi surface strongly modifies with 2% In doping at Cd site. With further increase in In content from 2 to 4%, we did not observe any Shubnikov-de Haas oscillation up to 9 T field, but the magnetoresistance is found to be quite large as in the case of undoped sample.
We study the low-energy electronic structure of three-dimensional Dirac semimetal, Cd$_3$(As$_{1-x}$P$_x$)$_2$ [$x$ = 0 and 0.34(3)], by employing the angle-resolved photoemission spectroscopy (ARPES). We observe that the bulk Dirac states in Cd$_3$( As$_{0.66}$P$_{0.34}$)$_2$ are gapped out with an energy of 0.23 eV, contrary to the parent Cd$_3$As$_2$ in which the gapless Dirac states have been observed. Thus, our results confirm the earlier predicted topological phase transition in Cd$_3$As$_2$ with perturbation. We further notice that the critical P substitution concentration, at which the two Dirac points that are spread along the $c$-axis in Cd$_3$As$_2$ form a single Dirac point at $Gamma$, is much lower [x$_c$(P)$<$ 0.34(3)] than the predicted value of x$_c$(P)=0.9. Therefore, our results suggest that the nontrivial band topology of Cd$_3$As$_2$ is remarkably sensitive to the P substitution and can only survive over a narrow substitution range, i.e., 0 $leq$ x (P) $<$ 0.34(3).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا