ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi arc mediated entropy transport in topological semimetals

168   0   0.0 ( 0 )
 نشر من قبل Timothy McCormick
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In topological Weyl semimetals, the low energy excitations are comprised of linearly dispersing Weyl fermions, which act as monopoles of Berry curvature in momentum space and result in topologically protected Fermi arcs on the surfaces. We propose that these Fermi arcs in Weyl semimetals lead to an anisotropic magnetothermal conductivity, strongly dependent on externally applied magnetic field and resulting from entropy transport driven by circulating electronic currents. The circulating currents result in no net charge transport, but they do result in a net entropy transport. This translates into a magnetothermal conductivity that should be a unique experimental signature for the existence of the arcs. We analytically calculate the Fermi arc-mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultra-quantum limit, where only the chiral Landau levels are involved. By numerically including the effects of higher Landau levels, we show how the two limits are linked at intermediate magnetic fields. This work provides the first proposed signature of Fermi arc-mediated thermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in experimental thermal applications.



قيم البحث

اقرأ أيضاً

130 - Yue Zheng , Wei Chen , D. Y. Xing 2020
Fermi arc surface states are the hallmark of Weyl semimetals, whose identification is usually challenged by their coexistence with gapless bulk states. Surface transport measurements by fabricating setups on the sample boundary provide a natural solu tion to this problem. Here, we study the Andreev reflection (AR) in a planar normal metal-superconductor junction on the Weyl semimetal surface with a pair of Fermi arcs. For a conserved transverse momentum, the occurrence of normal reflection depends on the relative orientation between the Fermi arcs and the normal of the junction, which is a direct result of the disconnected Fermi arcs. Consequently, a crossover from the suppressed to perfect AR occurs with varying the orientation of the planar junction, giving rise to a change from double-peak to plateau structure in conductance spectra. Moreover, such a crossover can be facilitated by imposing a magnetic field, making electrons slide along the Fermi arcs so as to switch between two regimes of the AR. Our results provide a decisive signature for the detection of Fermi arcs and open the possibilities of exploring novel phenomenology through their interplay with superconductivity.
Dirac semi-metals show a linear electronic dispersion in three dimension described by two copies of the Weyl equation, a theoretical description of massless relativistic fermions. At the surface of a crystal, the breakdown of fermion chirality is exp ected to produce topological surface states without any counterparts in high-energy physics nor conventional condensed matter systems, the so-called Fermi Arcs. Here we present Shubnikov-de Haas oscillations involving the Fermi Arc states in Focused Ion Beam prepared microstructures of Cd$_3$As$_2$. Their unusual magnetic field periodicity and dependence on sample thickness can be well explained by recent theoretical work predicting novel quantum paths weaving the Fermi Arcs together with chiral bulk states, forming Weyl orbits. In contrast to conventional cyclotron orbits, these are governed by the chiral bulk dynamics rather than the common momentum transfer due to the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.
The surface Fermi arc, as a hallmark of Weyl semimetals (WSMs), has been well known in current research, but it remains a challenge to unveil novel phenomena associated with the Fermi arc. Here, we predict a heretofore unrecognized process in WSMs, n amely, the photoinduced transition between the bulk states and the Fermi arc. We find this process is significant and can lead to a large effective three-dimensional shift current on the boundaries with the Fermi arc in wide terahertz range. Moreover, due to the low symmetry of the boundaries, the surface photogalvanic effect predicted here can appear in a large class of WSMs that do not have bulk shift current. Hence, our work not only unveils a hidden photogalvanic effect in WSMs but also suggests that all the WSMs are promising material candidates for developing efficient terahertz photodetectors.
Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk ele ctronic wavefunctions of the material. Recently, it has been shown that the TaAs and NbAs classes of materials harbor such a state of topological matter. We review the basic phenomena and experimental history of the discovery of the first Weyl semimetals, starting with the observation of topological Fermi arcs and Weyl nodes in TaAs and NbAs by angle and spin-resolved surface and bulk sensitive photoemission spectroscopy and continuing through magnetotransport measurements reporting the Adler-Bell-Jackiw chiral anomaly. We hope that this article provides a useful introduction to the theory of Weyl semimetals, a summary of recent experimental discoveries, and a guideline to future directions.
Superconducting Weyl semimetals present a novel and promising system to harbor new forms of unconventional topological superconductivity. Within the context of time-reversal symmetric Weyl semimetals with $d$-wave superconductivity, we demonstrate th at the number of Majorana cones equates to the number of intersections between the $d$-wave nodal lines and the Fermi arcs. We illustrate the importance of nodal line-arc intersections by demonstrating the existence of locally stable surface Majorana cones that the winding number does not predict. The discrepancy between Majorana cones and the winding number necessitates an augmentation of the winding number formulation to account for each intersection. In addition, we show that imposing additional mirror symmetries globally protect the nodal line-arc intersections and the corresponding Majorana cones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا