ترغب بنشر مسار تعليمي؟ اضغط هنا

Association schemes in which the thin residue is an elementary abelian $p$-group of rank $2$

190   0   0.0 ( 0 )
 نشر من قبل Kijung Kim
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we investigate the existence and schurity problem of association schemes whose thin residues are isomorphic to an elementary abelian $p$-group of rank $2$.



قيم البحث

اقرأ أيضاً

An association scheme is called quasi-thin if the valency of each its basic relation is one or two. A quasi-thin scheme is Kleinian if the thin residue of it forms a Klein group with respect to the relation product. It is proved that any Kleinian sch eme arises from near-pencil on~$3$ points, or affine or projective plane of order~$2$. The main result is that any non-Kleinian quasi-thin scheme a) is the two-orbit scheme of a suitable permutation group, and b) is characterized up to isomorphism by its intersection number array. An infinite family of Kleinian quasi-thin schemes for which neither a) nor b) holds is also constructed.
This paper describes in basic terms what a Thin Group is, as well as its uses in various subjects.
The purpose of this paper is twofold. Firstly, we generalize the notion of characteristic polynomials of hyperplane and toric arrangements to those of certain abelian Lie group arrangements. Secondly, we give two interpretations for the chromatic qua si-polynomials and their constituents through subspace and toric viewpoints.
Left braces, introduced by Rump, have turned out to provide an important tool in the study of set theoretic solutions of the quantum Yang-Baxter equation. In particular, they have allowed to construct several new families of solutions. A left brace $ (B,+,cdot )$ is a structure determined by two group structures on a set $B$: an abelian group $(B,+)$ and a group $(B,cdot)$, satisfying certain compatibility conditions. The main result of this paper shows that every finite abelian group $A$ is a subgroup of the additive group of a finite simple left brace $B$ with metabelian multiplicative group with abelian Sylow subgroups. This result complements earlier unexpected results of the authors on an abundance of finite simple left braces.
97 - Tilman Bauer 2020
We show that the functor of $p$-typical co-Witt vectors on commutative algebras over a perfect field $k$ of characteristic $p$ is defined on, and in fact only depends on, a weaker structure than that of a $k$-algebra. We call this structure a $p$-pol ar $k$-algebra. By extension, the functors of points for any $p$-adic affine commutative group scheme and for any formal group are defined on, and only depend on, $p$-polar structures. In terms of abelian Hopf algebras, we show that a cofree cocommutative Hopf algebra can be defined on any $p$-polar $k$-algebra $P$, and it agrees with the cofree commutative Hopf algebra on a commutative $k$-algebra $A$ if $P$ is the $p$-polar algebra underlying $A$; a dual result holds for free commutative Hopf algebras on finite $k$-coalgebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا