ترغب بنشر مسار تعليمي؟ اضغط هنا

Every finite abelian group is a subgroup of the additive group of a finite simple left brace

99   0   0.0 ( 0 )
 نشر من قبل Eric Jespers
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Left braces, introduced by Rump, have turned out to provide an important tool in the study of set theoretic solutions of the quantum Yang-Baxter equation. In particular, they have allowed to construct several new families of solutions. A left brace $(B,+,cdot )$ is a structure determined by two group structures on a set $B$: an abelian group $(B,+)$ and a group $(B,cdot)$, satisfying certain compatibility conditions. The main result of this paper shows that every finite abelian group $A$ is a subgroup of the additive group of a finite simple left brace $B$ with metabelian multiplicative group with abelian Sylow subgroups. This result complements earlier unexpected results of the authors on an abundance of finite simple left braces.



قيم البحث

اقرأ أيضاً

219 - V.A. Bovdi , A.B. Konovalov 2007
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerles conjecture on prime graphs.
188 - V.A. Bovdi , A.B. Konovalov 2008
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Rudvalis sporadic simple group Ru. As a consequence, for this group we confirm Kimmerles conjecture on prime graphs.
Using the Luthar--Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerles conjecture on prime graphs.
106 - V.A. Bovdi , A.B. Konovalov 2007
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group $M_{24}$. As a consequence, for this group we confirm Kimmerles conjecture on prime graphs.
We study the class of finite groups $G$ satisfying $Phi (G/N)= Phi(G)N/N$ for all normal subgroups $N$ of $G$. As a consequence of our main results we extend and amplify a theorem of Doerk concerning this class from the soluble universe to all finite groups and answer in the affirmative a long-standing question of Christensen whether the class of finite groups which possess complements for each of their normal subgroups is subnormally closed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا