ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is twofold. Firstly, we generalize the notion of characteristic polynomials of hyperplane and toric arrangements to those of certain abelian Lie group arrangements. Secondly, we give two interpretations for the chromatic quasi-polynomials and their constituents through subspace and toric viewpoints.
We introduce and study the notion of the $G$-Tutte polynomial for a list $mathcal{A}$ of elements in a finitely generated abelian group $Gamma$ and an abelian group $G$, which is defined by counting the number of homomorphisms from associated finite
Let $q$ be a positive integer. In our recent paper, we proved that the cardinality of the complement of an integral arrangement, after the modulo $q$ reduction, is a quasi-polynomial of $q$, which we call the characteristic quasi-polynomial. In this
Given an integral hyperplane arrangement, Kamiya-Takemura-Terao (2008 & 2011) introduced the notion of characteristic quasi-polynomial, which enumerates the cardinality of the complement of the arrangement modulo a positive integer. The most popular
We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give an explicit sufficient and necessar
The higher $q,t$-Catalan polynomial $C^{(m)}_n(q,t)$ can be defined combinatorially as a weighted sum of lattice paths contained in certain triangles, or algebraically as a complicated sum of rational functions indexed by partitions of $n$. This pape