ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure induced metallization with absence of structural transition in layered MoSe2

247   0   0.0 ( 0 )
 نشر من قبل Zhao Zhao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~ 60 GPa using multiple experimental techniques and ab -initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.



قيم البحث

اقرأ أيضاً

We investigated the pressure-dependent optical response of the low-dimensional Mott-Hubbard insulator TiOBr by transmittance and reflectance measurements in the infrared and visible frequency range. A suppression of the transmittance above a critical pressure and a concomitant increase of the reflectance are observed, suggesting a pressure-induced metallization of TiOBr. The metallic phase of TiOBr at high pressure is confirmed by the presence of additional excitations extending down to the far-infrared range. The pressure-induced metallization coincides with a structural phase transition, according to the results of x-ray powder diffraction experiments under pressure.
Among the family of TMDs, ReS2 takes a special position, which crystalizes in a unique distorted low-symmetry structure at ambient conditions. The interlayer interaction in ReS2 is rather weak, thus its bulk properties are similar to that of monolaye r. However, how does compression change its structure and electronic properties is unknown so far. Here using ab initio crystal structure searching techniques, we explore the high-pressure phase transitions of ReS2 extensively and predict two new high-pressure phases. The ambient pressure phase transforms to a distorted-1T structure at very low pressure and then to a tetragonal I41/amd structure at around 90 GPa. The distorted-1T structure undergoes a semiconductor-metal transition (SMT) at around 70 GPa with a band overlap mechanism. Electron-phonon calculations suggest that the I41/amd structure is superconducting and has a critical superconducting temperature of about 2 K at 100 GPa. We further perform high-pressure electrical resistance measurements up to 102 GPa. Our experiments confirm the SMT and the superconducting phase transition of ReS2 under high pressure. These experimental results are in good agreement with our theoretical predictions.
We have performed soft x-ray spectroscopy in order to study the photoirradiation time dependence of the valence band structure and chemical states of layered transition metal nitride chloride TiNCl. Under the soft x-ray irradiation, the intensities o f the states near the Fermi level (EF) and the Ti3+ component increased, while the Cl 2p intensity decreased. Ti 2p-3d resonance photoemission spectroscopy confirmed a distinctive Fermi edge with Ti 3d character. These results indicate the photo-induced metallization originates from deintercalation due to Cl desorption, and thus provide a new carrier doping method that controls the conducting properties of TiNCl.
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of the applied pressure. At zero applied pressure, the easy axis is along the c-direction or perpendicular to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c-axis to the ab-plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (>100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.
235 - Sam Azadi , Thomas D. Kuhne 2011
Being the simplest element with just one electron and proton the electronic structure of the Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure. Back in 1935 Wigner and Huntington predicted that at very high pressure solid molecular hydrogen would dissociate and form an atomic solid that is metallic. In spite of intense research efforts the experimental realization, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P6$_3$/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا