ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced metallization and superconducting phase in ReS2

191   0   0.0 ( 0 )
 نشر من قبل Jian Sun
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the family of TMDs, ReS2 takes a special position, which crystalizes in a unique distorted low-symmetry structure at ambient conditions. The interlayer interaction in ReS2 is rather weak, thus its bulk properties are similar to that of monolayer. However, how does compression change its structure and electronic properties is unknown so far. Here using ab initio crystal structure searching techniques, we explore the high-pressure phase transitions of ReS2 extensively and predict two new high-pressure phases. The ambient pressure phase transforms to a distorted-1T structure at very low pressure and then to a tetragonal I41/amd structure at around 90 GPa. The distorted-1T structure undergoes a semiconductor-metal transition (SMT) at around 70 GPa with a band overlap mechanism. Electron-phonon calculations suggest that the I41/amd structure is superconducting and has a critical superconducting temperature of about 2 K at 100 GPa. We further perform high-pressure electrical resistance measurements up to 102 GPa. Our experiments confirm the SMT and the superconducting phase transition of ReS2 under high pressure. These experimental results are in good agreement with our theoretical predictions.

قيم البحث

اقرأ أيضاً

We report the pressure (p_max = 1.5 GPa) evolution of the crystal structure of the Weyl semimetal T_d-MoTe_2 by means of neutron diffraction experiments. We find that the fundamental non-centrosymmetric structure T_d is fully suppressed and transform s into a centrosymmertic 1T structure at a critical pressure of p_cr = 1.2 GPa. This is strong evidence for a pressure induced quantum phase transition (QPT) between topological to a trivial electronic state. Although the topological QPT has strong effect on magnetoresistance, it is interesting that the superconducting critical temperature T_c, the superfluid density, and the SC gap all change smoothly and continuously across p_cr and no sudden effects are seen concomitantly with the suppression of the T_d structure. This implies that the T_c, and thus the SC pairing strength, is unaffected by the topological QPT. However, the QPT requires the change in the SC gap symmetry from non-trivial s+- to a trivial s++ state, which we discuss in this work. Our systematic characterizations of the structure and superconducting properties associated with the topological QPT provide deep insight into the pressure induced phase diagram in this topological quantum material.
We revealed that the superconducting transition temperature Tc of the multi-component superconductor Sr2RuO4 is enhanced to 3.3 K under in-plane uniaxial pressure that reduces the tetragonal crystal symmetry. This result suggests that new superconduc ting phases with a one-component order parameter are induced. We have also clarified the inplane pressure direction dependence of the emergence of this higher-Tc superconducting phase: pressure along the [100] direction is more favorable than pressure along the [110] direction. This result is probably closely related to the direct shortening of the in-plane Ru-O bond length along the pressure direction and the approach of the gamma Fermi surface to the van Hove singularity under the pressure parallel to the [100] direction.
The pressure-induced phase transition of bismuth telluride, Bi2Te3, has been studied by synchrotron x-ray diffraction measurements at room temperature using a diamond-anvil cell (DAC) with loading pressures up to 29.8 GPa. We found a high-pressure bo dy-centered cubic (bcc) phase in Bi2Te3 at 25.2 GPa, which is denoted as phase IV, and this phase apperars above 14.5 GPa. Upon releasing the pressure from 29.8 GPa, the diffraction pattern changes with pressure hysteresis. The original rhombohedral phase is recovered at 2.43 GPa. The bcc structure can explain the phase IV peaks. We assumed that the structural model of phase IV is analogous to a substitutional binary alloy; the Bi and Te atoms are distributed in the bcc-lattice sites with space group Im-3m. The results of Rietveld analysis based on this model agree well with both the experimental data and calculated results. Therefore, the structure of phase IV in Bi2Te3 can be explained by a solid solution with a bcc lattice in the Bi-Te (60 atomic% tellurium) binary system.
Raman and combined trasmission and reflectivity mid infrared measurements have been carried out on monoclinic VO$_2$ at room temperature over the 0-19 GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence obtained for both lattice d ynamics and optical gap shows a remarkable stability of the system up to P*$sim$10 GPa. Evidence of subtle modifications of V ion arrangements within the monoclinic lattice together with the onset of a metallization process via band gap filling are observed for P$>$P*. Differently from ambient pressure, where the VO$_2$ metal phase is found only in conjunction with the rutile structure above 340 K, a new room temperature metallic phase coupled to a monoclinic structure appears accessible in the high pressure regime, thus opening to new important queries on the physics of VO$_2$.
An extended study on PdS is carried out with the measurements of the resistivity, Hall coefficient, Raman scattering, and X-ray diffraction at high pressures up to 42.3 GPa. With increasing pressure, superconductivity is observed accompanying with a structural phase transition at around 19.5 GPa. The coexistence of semiconducting and metallic phases observed at normal state is examined by the Raman scattering and X-ray diffraction between 19.5 and 29.5 GPa. After that, only the metallic normal state maintains with an almost constant superconducting transition temperature. The similar evolution between the superconducting transition temperature and carrier concentration with pressure supports the phonon-mediated superconductivity in this material. These results highlight the important role of pressure played in inducing superconductivity from these narrow band-gap semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا