ﻻ يوجد ملخص باللغة العربية
We have performed soft x-ray spectroscopy in order to study the photoirradiation time dependence of the valence band structure and chemical states of layered transition metal nitride chloride TiNCl. Under the soft x-ray irradiation, the intensities of the states near the Fermi level (EF) and the Ti3+ component increased, while the Cl 2p intensity decreased. Ti 2p-3d resonance photoemission spectroscopy confirmed a distinctive Fermi edge with Ti 3d character. These results indicate the photo-induced metallization originates from deintercalation due to Cl desorption, and thus provide a new carrier doping method that controls the conducting properties of TiNCl.
Raman and combined trasmission and reflectivity mid infrared measurements have been carried out on monoclinic VO$_2$ at room temperature over the 0-19 GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence obtained for both lattice d
Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from
Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measu
Unknown changes in the crystalline order of regular TiO$_2$ result in the formation of black titania, which has garnered significant interest as a photocatalytic material due to the accompanying electronic changes. Herein, we determine the nature of
We fabricate LaxSr2-x-yBayIrO4-delta thin films by pulsed laser deposition, in an effort to realize the effective carrier doping and metallization in the Sr2IrO4 system. We design ideal in-plane Ir-O-Ir frame structure by utilizing tensile substrate