ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for water maser emission toward obscured post-AGB star and planetary nebula candidates

228   0   0.0 ( 0 )
 نشر من قبل Jose F. Gomez
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water maser emission at 22 GHz is a useful probe to study the transition between the nearly spherical mass-loss in the AGB to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae (PNe) once photoionization starts. We intend to find new cases of post-AGB stars and PNe with water maser emission, including water fountains or water-maser-emitting PNe. We observed water maser emission in a sample of 133 objects, with a significant fraction being post-AGB and young PN candidate sources with strong obscuration. We detected this emission in 15 of them, of which seven are reported here for the first time. We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of ~96 km/s in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate). The water maser spectra of water fountain candidates like IRAS 17291-2147 show significantly less maser components than others (e.g., IRAS 18113-2503). We speculate that most post-AGBs may show water maser emission with wide enough velocity spread (> 100 km/s) when observed with enough sensitivity and/or for long enough periods of time. Therefore, it may be necessary to single out a special group of water fountains, probably defined by their high maser luminosities. We also suggest that the presence of both water and OH masers in a PN is a better tracer of its youth, rather than the presence of just one of these species.



قيم البحث

اقرأ أيضاً

We intended to study the incidence and characteristics of water masers in the envelopes of stars in the post-AGB and PN evolutionary stages. We have used the 64-m antenna in Parkes (Australia) to search for water maser emission at 22 GHz, towards a sample of 74 sources with IRAS colours characteristic of post-AGB stars and PNe, at declination $< -32 deg$. In our sample, 39% of the sources are PNe or PNe candidates, and 50% are post-AGB stars or post-AGB candidates. We have detected four new water masers, all of them in optically obscured sources: three in PNe candidates (IRAS 12405-6219, IRAS 15103-5754, and IRAS 16333-4807); and one in a post-AGB candidate (IRAS 13500-6106). The PN candidate IRAS 15103-5754 has water fountain characteristics, and it could be the first PN of this class found. We confirm the tendency suggested in Paper I that the presence of water masers in the post-AGB phase is favoured in obscured sources with massive envelopes. We propose an evolutionary scenario for water masers in the post-AGB and PNe stages, in which ``water fountain masers could develop during post-AGB and early PN stages. Later PNe would show lower velocity maser emission, both along jets and close to the central objects, with only the central masers remaining in more evolved PNe.
Observations of H$_2$O masers towards the post-AGB star and water fountain source OH 009.1--0.4 were made as part of HOPS (The H$_2$O southern galactic Plane Survey), with the Mopra radiotelescope. Together with followup observations using the Austra lia Telescope Compact Array (ATCA), we have identified H$_2$O maser emission over a velocity spread of nearly 400km/s (--109 to +289km/s). This velocity spread appears to be the largest of any known maser source in our Galaxy. High resolution observations with the ATCA indicate the maser emission is confined to a region $0farcs3 times 0farcs3$ and shows weak evidence for a separation of the red- and blueshifted maser spots. We are unable to determine if the water fountain is projected along the line of sight, or is inclined, but either way OH 009.1--0.4 is an interesting source, worthy of followup observations.
SwSt 1 (PN G001.5-06.7) is a bright and compact planetary nebula containing a late [WC]-type central star. Previous studies suggested that the nebular and stellar lines are slowly changing with time. We studied new and archival optical and ultraviole t spectra of the object. The [OIII] 4959 and 5007 A to $mathrm{H}beta$ line flux ratios decreased between about 1976 and 1997/2015. The stellar spectrum also shows changes between these epochs. We modeled the stellar and nebular spectra observed at different epochs. The analyses indicate a drop of the stellar temperature from about 42 kK to 40.5 kK between 1976 and 1993. We do not detect significant changes between 1993 and 2015. The observations show that the star performed a loop in the H-R diagram. This is possible when a shell source is activated during its post-AGB evolution. We infer that a late thermal pulse (LTP) experienced by a massive post-AGB star can explain the evolution of the central star. Such a star does not expand significantly as the result of the LTP and does not became a born-again red giant. However, the released energy can remove the tiny H envelope of the star.
We present the discovery and characterisation of the post-common-envelope central star system in the planetary nebula PN G283.7$-$05.1. Deep images taken as part of the POPIPlaN survey indicate that the nebula may possess a bipolar morphology similar to other post-common-envelope planetary nebulae. Simultaneous light and radial velocity curve modelling reveals the newly discovered binary system to comprise a highly-irradiated, M-type main-sequence star in a 5.9 hour orbit with a hot pre-white-dwarf. The nebular progenitor is found to have a particularly low mass of around 0.4 M$_odot$, making PN G283.7$-$05.1 one of only a handful of candidate planetary nebulae to be the product of a common-envelope event while still on the red giant branch. Beyond its low mass, the model temperature, surface gravity and luminosity are all found to be consistent with the observed stellar and nebular spectra through comparison with model atmospheres and photoionisation modelling. However, the high temperature (T$_mathrm{eff}sim$95kK) and high luminosity of the central star of the nebula are not consistent with post-RGB evolutionary tracks.
We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L$_od ot$. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study this processes with very high angular resolution. This type of emission has been confirmed in objects with L$_{rm bol}ge 1$ L$_odot$. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 { (a Class 0 protostar of L$_{rm bol}simeq 3.6-5.3$ L$_odot$)}, and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L$_{rm bol}le 1$ L$_odot$, or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا