ﻻ يوجد ملخص باللغة العربية
We intended to study the incidence and characteristics of water masers in the envelopes of stars in the post-AGB and PN evolutionary stages. We have used the 64-m antenna in Parkes (Australia) to search for water maser emission at 22 GHz, towards a sample of 74 sources with IRAS colours characteristic of post-AGB stars and PNe, at declination $< -32 deg$. In our sample, 39% of the sources are PNe or PNe candidates, and 50% are post-AGB stars or post-AGB candidates. We have detected four new water masers, all of them in optically obscured sources: three in PNe candidates (IRAS 12405-6219, IRAS 15103-5754, and IRAS 16333-4807); and one in a post-AGB candidate (IRAS 13500-6106). The PN candidate IRAS 15103-5754 has water fountain characteristics, and it could be the first PN of this class found. We confirm the tendency suggested in Paper I that the presence of water masers in the post-AGB phase is favoured in obscured sources with massive envelopes. We propose an evolutionary scenario for water masers in the post-AGB and PNe stages, in which ``water fountain masers could develop during post-AGB and early PN stages. Later PNe would show lower velocity maser emission, both along jets and close to the central objects, with only the central masers remaining in more evolved PNe.
Water maser emission at 22 GHz is a useful probe to study the transition between the nearly spherical mass-loss in the AGB to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of pl
During the last years, many observational studies have revealed that binaries play an active role in the shaping of non spherical planetary nebulae. We review the different works that lead to the direct or indirect evidence for the presence of binary
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic fi
Stars at the top of the asymptotic giant branch (AGB) can exhibit maser emission from molecules like SiO, H2O and OH. As the star evolves to the planetary nebula phase, mass-loss stops and ionization of the envelope begins, making the masers disappea