ﻻ يوجد ملخص باللغة العربية
We present the discovery and characterisation of the post-common-envelope central star system in the planetary nebula PN G283.7$-$05.1. Deep images taken as part of the POPIPlaN survey indicate that the nebula may possess a bipolar morphology similar to other post-common-envelope planetary nebulae. Simultaneous light and radial velocity curve modelling reveals the newly discovered binary system to comprise a highly-irradiated, M-type main-sequence star in a 5.9 hour orbit with a hot pre-white-dwarf. The nebular progenitor is found to have a particularly low mass of around 0.4 M$_odot$, making PN G283.7$-$05.1 one of only a handful of candidate planetary nebulae to be the product of a common-envelope event while still on the red giant branch. Beyond its low mass, the model temperature, surface gravity and luminosity are all found to be consistent with the observed stellar and nebular spectra through comparison with model atmospheres and photoionisation modelling. However, the high temperature (T$_mathrm{eff}sim$95kK) and high luminosity of the central star of the nebula are not consistent with post-RGB evolutionary tracks.
We present a detailed study of the binary central star of the planetary nebula ETHOS 1 (PN G068.1+11.0). Simultaneous modelling of light and radial velocity curves reveals the binary to comprise a hot and massive pre-white-dwarf with an M-type main-s
We report on the discovery of ETHOS 1 (PN G068.1+11.0), the first spectroscopically confirmed planetary nebula (PN) from a survey of the SuperCOSMOS Science Archive for high-latitude PNe. ETHOS 1 stands out as one of the few PNe to have both polar ou
The Chandra X-ray Observatory has detected relatively hard X-ray emission from the central stars of several planetary nebulae (PNe). A subset have no known late-type companions, making it very difficult to isolate which of several competing mechanism
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evoluti