ﻻ يوجد ملخص باللغة العربية
We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous ($M_{r}approx-27.8$ mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of $Re_{mathrm{rel}}=610$ yr$^{-1}$ (68% confidence interval of 110-2000 yr$^{-1}$). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide orphan afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.
We report the discovery of the optical and radio afterglow of GRB 010921, the first gamma-ray burst afterglow to be found from a localization by the High Energy Transient Explorer (HETE) satellite. We present optical spectroscopy of the host galaxy w
The Gamma Ray Burst (GRB) 180720B is one of the brightest events detected by the Fermi satellite and the first GRB detected by the H.E.S.S. telescope above 100 GeV. We analyse the Fermi (GBM and LAT) and Swift (XRT and BAT) data and describe the evol
We present the discovery of short GRB 080905A, its optical afterglow and host galaxy. Initially discovered by Swift, our deep optical observations enabled the identification of a faint optical afterglow, and subsequently a face-on spiral host galaxy
GRB 090618 is a bright GRB with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. As high resolution spectral data of emph{Swift}/XRT is available for the early afterglow, we investi
In 2000, Lamb and Reichart predicted that gamma-ray bursts (GRBs) and their afterglows occur in sufficient numbers and at sufficient brightnesses at very high redshifts (z > 5) to eventually replace quasars as the preferred probe of element formation