ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery and identification of the very high redshift afterglow of GRB 050904

76   0   0.0 ( 0 )
 نشر من قبل Daniel Reichart
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2000, Lamb and Reichart predicted that gamma-ray bursts (GRBs) and their afterglows occur in sufficient numbers and at sufficient brightnesses at very high redshifts (z > 5) to eventually replace quasars as the preferred probe of element formation and reionization in the early universe and to be used to characterize the star-formation history of the early universe, perhaps back to when the first stars formed. Here we report the discovery of the afterglow of GRB 050904 and the identification of GRB 050904 as the first very high redshift GRB. We measure its redshift to be 6.39(+0.11,-0.12), which is consistent with the reported spectroscopic redshift (6.29 +/- 0.01). Furthermore, just redward of Ly-alpha the flux is suppressed by a factor of three on the first night, but returns to expected levels by the fourth night. We propose that this is due to absorption by molecular hydrogen that was excited to rovibrational states by the GRBs prompt emission, but was then overtaken by the jet. Now that very high redshift GRBs have been shown to exist, and at least in this case the afterglow was very bright, observing programs that are designed to capitalize on this science will likely drive a new era of study of the early universe, using GRBs as probes.



قيم البحث

اقرأ أيضاً

We report near simultaneous multi-color (RIYJHK) observations made with the MAGNUM 2m telescope of the gamma ray burst GRB 050904 detected by the SWIFT satellite. The spectral energy distribution shows a very large break between the I and J bands. Us ing intergalactic transmissions measured from high redshift quasars we show that the observations place a 95% confidence lower limit of z=6.18 on the object, consistent with a later measured spectroscopic redshift of 6.29 obtained by Kawai et al. (2005) with the Subaru telescope. We show that the break strength in the R and I bands is consistent with that measured in the quasars. Finally we consider the implications for the star formation history at high redshift.
123 - D.M. Wei , T. Yan , Y.Z. Fan 2005
GRB050904 is very interesting since it is by far the most distant GRB event known to date($z=6.29$). It was reported that during the prompt high energy emission phase, a very bright optical flare was detected, and it was temporal coincident with an X -ray flare. Here we use two models to explain the optical flare, One is the late internal shock model, in which the optical flare is produced by the synchrotron radiation of the electrons accelerated by the late internal shock, and the X-ray flare is produced by the synchrotron-self-Compton mechanism. The other is the external forward-reverse shock model, in which the optical flare is from the reverse shock emission and the X-ray flare is attributed to the central engine activity. We show that with proper parameters, a bright optical flare can appear in both models. We think the late internal shock model is more favored since in this model the optical flash and the X-ray flare have the same origin, which provides a natural explanation of the temporal coincidence of them. In the forward-reverse shock scenario, fits to the optical flare and the late afterglow suggests that the physical parameters of the reverse shock are much different from that of forward shock, as found in modeling the optical flash of GRB 990123 previously.
We present the discovery of short GRB 080905A, its optical afterglow and host galaxy. Initially discovered by Swift, our deep optical observations enabled the identification of a faint optical afterglow, and subsequently a face-on spiral host galaxy underlying the GRB position, with a chance alignment probability of <1%. There is no supernova component present in the afterglow to deep limits. Spectroscopy of the galaxy provides a redshift of z=0.1218, the lowest redshift yet observed for a short GRB. The GRB lies offset from the host galaxy centre by ~18.5 kpc, in the northern spiral arm which exhibits an older stellar population than the southern arm. No emission lines are visible directly under the burst position, implying little ongoing star formation at the burst location. These properties would naturally be explained were the progenitor of GRB 080905A a compact binary merger.
GRB 050730 is a long duration high-redshift burst (z=3.967) discovered by Swift. The afterglow shows variability and is well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 05073 0 including observations from the millimeter to X-rays. We use multi-wavelength afterglow data to understand the temporal and spectral decay properties with superimposed variability of this high redshift burst. Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r, R, i, I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 hours post-burst in the K, J, I, R, V and B bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies. The early afterglow shows variability at early times and shows a steepening at ~0.1 days (8.6 ks) in the B, V, r, R, i, I, J and K passbands. The early afterglow light curve decayed with alpha_1 = -0.60+/-0.07 and alpha_2 = -1.71+/-0.06 based on R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw alpha_x = -2.5+/-0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 hours after the burst. An electron energy index, p, of ~ 2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and indicates that the synchrotron cooling frequency nu_c is above observed frequencies.
We present the discovery and follow-up observations of the afterglow of the GRB 011121 and its associated supernova SN 2001ke. Images were obtained with the OGLE 1.3m telescope in BVRI passbands, starting 10.3 hours after the burst. The temporal anal ysis of our early data indicates a steep decay, independent of wavelength with power-law index alpha=-1.72+/-0.05. There is no evidence for a break in the light curve earlier than 2.5 days after the burst. The spectral energy distribution determined from the early broad-band photometry is a power-law with index beta=-0.66+/-0.13 after correcting for a large reddening. Spectra, obtained with the Magellan 6.5m Baade telescope, reveal narrow emission lines from the host galaxy which provide a redshift of z=0.362+/-0.001 to the GRB. We also present late R and J-band observations of the afterglow between 7-17 days after the burst. The late-time photometry shows a large deviation from the initial decline and our data combined with Hubble Space Telescope photometry provide strong evidence for a supernova peaking about 12 rest-frame days after the GRB. The first spectrum ever obtained of a GRB supernova at cosmological distance revealed a blue continuum. SN 2001ke was more blue near maximum than SN 1998bw and faded more quickly which demonstrates that a range of properties are possible in supernovae which generate GRB. The blue color is consistent with a supernova interacting with circumstellar gas and this progenitor wind is also evident in the optical afterglow. This is the best evidence to date that classical, long gamma-ray bursts are generated by core-collapse supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا