ترغب بنشر مسار تعليمي؟ اضغط هنا

The rise and fall of the high-energy afterglow emission of GRB 180720B

114   0   0.0 ( 0 )
 نشر من قبل Michele Ronchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gamma Ray Burst (GRB) 180720B is one of the brightest events detected by the Fermi satellite and the first GRB detected by the H.E.S.S. telescope above 100 GeV. We analyse the Fermi (GBM and LAT) and Swift (XRT and BAT) data and describe the evolution of the burst spectral energy distribution in the 0.5 keV - 10 GeV energy range over the first 500 seconds of emission. We reveal a smooth transition from the prompt phase, dominated by synchrotron emission in a moderately fast cooling regime, to the afterglow phase whose emission has been observed from the radio to the GeV energy range. The LAT (0.1 - 100 GeV) light curve initially rises ($F_{rm LAT}propto t^{2.4}$), peaks at $sim$78 s, and falls steeply ($F_{rm LAT}propto t^{-2.2}$) afterwards. The peak, which we interpret as the onset of the fireball deceleration, allows us to estimate the bulk Lorentz factor $Gamma_{0}sim 150 (300)$ under the assumption of a wind-like (homogeneous) circum-burst medium density. We derive a flux upper limit in the LAT energy range at the time of H.E.S.S. detection, but this does not allow us to unveil the nature of the high energy component observed by H.E.S.S. We fit the prompt spectrum with a physical model of synchrotron emission from a non-thermal population of electrons. The 0 - 35 s spectrum after its $E F(E)$ peak (at 1 - 2 MeV) is a steep power law extending to hundreds of MeV. We derive a steep slope of the injected electron energy distribution $N(gamma)propto gamma^{-5}$. Our fit parameters point towards a very low magnetic field ($Bsim 1 $ G) in the emission region.



قيم البحث

اقرأ أيضاً

We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The early-time observations reveal multiple emission components that evolve independently, with a delayed po wer-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to constrain the transition from internal shock to external shock dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment and find that high-energy photons observed by Fermi LAT are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process.
Long-lived high-energy (>100MeV) emission, a common feature of most Fermi-LAT detected gamma-ray burst, is detected up to sim 10^2 s in the short GRB 090510. We study the origin of this long-lived high-energy emission, using broad-band observations i ncluding X-ray and optical data. We confirm that the late > 100 MeV, X-ray and optical emission can be naturally explained via synchrotron emission from an adiabatic forward shock propagating into a homogeneous ambient medium with low number density. The Klein-Nishina effects are found to be significant, and effects due to jet spreading and magnetic field amplification in the shock appear to be required. Under the constraints from the low-energy observations, the adiabatic forward shock synchrotron emission is consistent with the later-time (t>2s) high-energy emission, but falls below the early-time (t < 2s) high energy emission. Thus we argue that an extra high energy component is needed at early times. A standard reverse shock origin is found to be inconsistent with this extra component. Therefore, we attribute the early part of the high-energy emission (t< 2s) to the prompt component, and the long-lived high energy emission (t>2s) to the adiabatic forward shock synchrotron afterglow radiation. This avoids the requirement for an extremely high initial Lorentz factor.
We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous ($M_{r}approx-27.8$ mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of $Re_{mathrm{rel}}=610$ yr$^{-1}$ (68% confidence interval of 110-2000 yr$^{-1}$). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide orphan afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.
157 - A. M. Beloborodov 2010
The curvature of a relativistic blast wave implies that its emission arrives to observers with a spread in time. This effect is believed to wash out fast variability in the lightcurves of GRB afterglows. We note that the spreading effect is reduced i f emission is anisotropic in the rest-frame of the blast wave (i.e. if emission is limb-brightened or limb-darkened). In particular, synchrotron emission is almost certainly anisotropic, and may be strongly anisotropic, depending on details of electron acceleration in the blast wave. Anisotropic afterglows can display fast and strong variability at high frequencies (above the fast-cooling frequency). This may explain the existence of bizarre features in the X-ray afterglows of GRBs, such as sudden drops and flares. We also note that a moderate anisotropy can significantly delay the jet break in the lightcurve, which makes it harder to detect.
We present a leptonic model on the external shock context to describe the high-energy emission of GRB 940217, GRB 941017 and GRB 970217A. We argue that the emission consists of two components, one with a similar duration of the burst, and a second, l onger-lasting GeV phase lasting hundred of seconds after the prompt phase. Both components can be described as synchrotron self-Compton emission from a reverse and forward shock respectively. For the reverse shock, we analyze the synchrotron self-Compton in the thick-shell case. The calculated fluxes and break energies are all consistent with the observed values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا