ترغب بنشر مسار تعليمي؟ اضغط هنا

Instability towards Staggered Loop Currents in the Three-Orbital Model for Cuprate Superconductors

138   0   0.0 ( 0 )
 نشر من قبل Sinan Bulut PhD
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence for the existence of a spontaneous instability towards an orbital loop-current phase in a multiorbital Hubbard model for the CuO$_2$ planes in cuprates. Contrary to the previously proposed $theta_{II}$ phase with intra-unit cell currents, the identified instability is towards a staggered pattern of intertwined current loops. The orbitally resolved current pattern thereby shares its staggered character with the proposal of d-density wave order. The current pattern will cause a Fermi surface reconstruction and the opening of a pseudogap. We argue that the pseudogap phase with time-reversal symmetry breaking currents is susceptible to further phase transitions and therefore offers a route to account for axial incommensurate charge order and a polar Kerr effect in underdoped cuprates.



قيم البحث

اقرأ أيضاً

High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc e of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.
Nematic order resulting from the partial melting of density-waves has been proposed as the mechanism to explain nematicity in iron-based superconductors. An outstanding question, however, is whether the microscopic electronic model for these systems -- the multi-orbital Hubbard model -- displays such an ordered state as its leading instability. In contrast to usual electronic instabilities, such as magnetic and charge order, this fluctuation-driven phenomenon cannot be captured by the standard RPA method. Here, by including fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its nematic susceptibility and contrast it with its ferro-orbital order susceptibility, showing that its leading instability is the spin-driven nematic phase. Our results also demonstrate the primary role played by the $d_{xy}$ orbital in driving the nematic transition, and reveal that high-energy magnetic fluctuations are essential to stabilize nematic order in the absence of magnetic order.
233 - J. W. Mei , Z. Y. Weng 2009
We identify a new kind of elementary excitations, spin-rotons, in the doped Mott insulator. They play a central role in deciding the superconducting transition temperature Tc, resulting in a simple Tc formula,Tc=Eg/6, with Eg as the characteristic en ergy scale of the spin rotons. We show that the degenerate S=1 and S=0 rotons can be probed by neutron scattering and Raman scattering measurements, respectively, in good agreement with the magnetic resonancelike mode and the Raman A1g mode observed in the high-Tc cuprates.
We study the emergence of charge ordered phases within a pi-loop current (piLC) model for the pseudogap based on a three-band model for underdoped cuprate superconductors. Loop currents and charge ordering are driven by distinct components of the sho rt-range Coulomb interactions: loop currents result from the repulsion between nearest-neighbor copper and oxygen orbitals, while charge order results from repulsion between neighboring oxygen orbitals. We find that the leading piLC phase has an antiferromagnetic pattern similar to previously discovered staggered flux phases, and that it emerges abruptly at hole dopings p below the van Hove filling. Subsequent charge ordering tendencies in the piLC phase reveal that diagonal d-charge density waves (dCDW) are suppressed by the loop currents while axial order competes more weakly. In some cases we find a wide temperature range below the loop-current transition, over which the susceptibility towards an axial dCDW is large. In these cases, short-range axial charge order may be induced by doping-related disorder. A unique feature of the coexisting dCDW and piLC phases is the emergence of an incommensurate modulation of the loop currents. If the dCDW is biaxial (checkerboard) then the resulting incommensurate current pattern breaks all mirror and time-reversal symmetries, thereby allowing for a polar Kerr effect.
187 - Louis Taillefer 2010
The origin of the exceptionally strong superconductivity of cuprates remains a subject of debate after more than two decades of investigation. Here we follow a new lead: The onset temperature for superconductivity scales with the strength of the anom alous normal-state scattering that makes the resistivity linear in temperature. The same correlation between linear resistivity and Tc is found in organic superconductors, for which pairing is known to come from fluctuations of a nearby antiferromagnetic phase, and in pnictide superconductors, for which an antiferromagnetic scenario is also likely. In the cuprates, the question is whether the pseudogap phase plays the corresponding role, with its fluctuations responsible for pairing and scattering. We review recent studies that shed light on this phase - its boundary, its quantum critical point, and its broken symmetries. The emerging picture is that of a phase with spin-density-wave order and fluctuations, in broad analogy with organic, pnictide, and heavy-fermion superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا