ترغب بنشر مسار تعليمي؟ اضغط هنا

Instrumental systematics and weak gravitational lensing

371   0   0.0 ( 0 )
 نشر من قبل Rachel Mandelbaum
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rachel Mandelbaum




اسأل ChatGPT حول البحث

We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.



قيم البحث

اقرأ أيضاً

In a companion paper we have reported a $>5sigma$ detection of degree scale $B $-mode polarization at 150 GHz by the BICEP2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call deprojection, for filtering the leading order beam-induced contamination from time ordered data, and show that it removes power from BICEP2s $BB$ spectrum consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on $BB$ contamination from individual sources of potential systematics. We find that systematics contribute $BB$ power that is a factor $sim10times$ below BICEP2s 3-year statistical uncertainty, and negligible compared to the observed $BB$ signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to $r=(3-6)times10^{-3}$.
A fraction of the light observed from edge-on disk galaxies is polarized due to two physical effects: selective extinction by dust grains aligned with the magnetic field, and scattering of the anisotropic starlight field. Since the reflection and tra nsmission coefficients of the reflecting and refracting surfaces in an optical system depend on the polarization of incoming rays, this optical polarization produces both (a) a selection bias in favor of galaxies with specific orientations and (b) a polarization-dependent PSF. In this work we build toy models to obtain for the first time an estimate for the impact of polarization on PSF shapes and the impact of the selection bias due to the polarization effect on the measurement of the ellipticity used in shear measurements. In particular, we are interested in determining if this effect will be significant for WFIRST. We show that the systematic uncertainties in the ellipticity components are $8times 10^{-5}$ and $1.1 times 10^{-4}$ due to the selection bias and PSF errors respectively. Compared to the overall requirements on knowledge of the WFIRST PSF ellipticity ($4.7times 10^{-4}$ per component), both of these systematic uncertainties are sufficiently close to the WFIRST tolerance level that more detailed studies of the polarization effects or more stringent requirements on polarization-sensitive instrumentation for WFIRST are required.
The observation of cosmic microwave background (CMB) anisotropies is one of the key probes of physical cosmology. The weak nature of this signal has driven the construction of increasingly complex and sensitive experiments observing the sky at multip le frequencies with thousands of polarization sensitive detectors. Given the high sensitivity of such experiments, instrumental systematic effects can become the limiting factor towards the full scientific exploitation of their data. In this paper we present s4cmb (Systematics for CMB), a Python package designed to simulate raw data streams in time domain of modern CMB experiments based on bolometric technology, and to inject in these realistic instrumental systematics effects. The aim of the package is to help assessing the contamination due to instrumental systematic effects on real data, to guide the design of future instruments, as well as to increase the realism of simulated data sets required in the development of accurate data analysis methods.
The LSST survey will provide unprecedented statistical power for measurements of dark energy. Consequently, controlling systematic uncertainties is becoming more important than ever. The LSST observing strategy will affect the statistical uncertainty and systematics control for many science cases; here, we focus on weak lensing systematics. The fact that the LSST observing strategy involves hundreds of visits to the same sky area provides new opportunities for systematics mitigation. We explore these opportunities by testing how different dithering strategies (pointing offsets and rotational angle of the camera in different exposures) affect additive weak lensing shear systematics on a baseline operational simulation, using the $rho-$statistics formalism. Some dithering strategies improve systematics control at the end of the survey by a factor of up to $sim 3-4$ better than others. We find that a random translational dithering strategy, applied with random rotational dithering at every filter change, is the most effective of those strategies tested in this work at averaging down systematics. Adopting this dithering algorithm, we explore the effect of varying the area of the survey footprint, exposure time, number of exposures in a visit, and exposure to the Galactic plane. We find that any change that increases the average number of exposures (in filters relevant to weak lensing) reduces the additive shear systematics. Some ways to achieve this increase may not be favorable for the weak lensing statistical constraining power or for other probes, and we explore the relative trade-offs between these options given constraints on the overall survey parameters.
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of ph ysics affecting growth - dynamical dark energy, extended gravity, neutrino masses, and spatial curvature - we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area. Finally, we examine the robustness of results for different fiducial cosmologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا