ﻻ يوجد ملخص باللغة العربية
The observation of cosmic microwave background (CMB) anisotropies is one of the key probes of physical cosmology. The weak nature of this signal has driven the construction of increasingly complex and sensitive experiments observing the sky at multiple frequencies with thousands of polarization sensitive detectors. Given the high sensitivity of such experiments, instrumental systematic effects can become the limiting factor towards the full scientific exploitation of their data. In this paper we present s4cmb (Systematics for CMB), a Python package designed to simulate raw data streams in time domain of modern CMB experiments based on bolometric technology, and to inject in these realistic instrumental systematics effects. The aim of the package is to help assessing the contamination due to instrumental systematic effects on real data, to guide the design of future instruments, as well as to increase the realism of simulated data sets required in the development of accurate data analysis methods.
In a companion paper we have reported a $>5sigma$ detection of degree scale $B $-mode polarization at 150 GHz by the BICEP2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus
We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those fro
We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understand
The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates
The large size of the time ordered data of cosmic microwave background experiments presents challenges for mission planning and data analysis. These issues are particularly significant for Antarctica- and space-based experiments, which depend on sate