ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of Light Polarization Effects on Weak Lensing Systematics

116   0   0.0 ( 0 )
 نشر من قبل Chien-Hao Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fraction of the light observed from edge-on disk galaxies is polarized due to two physical effects: selective extinction by dust grains aligned with the magnetic field, and scattering of the anisotropic starlight field. Since the reflection and transmission coefficients of the reflecting and refracting surfaces in an optical system depend on the polarization of incoming rays, this optical polarization produces both (a) a selection bias in favor of galaxies with specific orientations and (b) a polarization-dependent PSF. In this work we build toy models to obtain for the first time an estimate for the impact of polarization on PSF shapes and the impact of the selection bias due to the polarization effect on the measurement of the ellipticity used in shear measurements. In particular, we are interested in determining if this effect will be significant for WFIRST. We show that the systematic uncertainties in the ellipticity components are $8times 10^{-5}$ and $1.1 times 10^{-4}$ due to the selection bias and PSF errors respectively. Compared to the overall requirements on knowledge of the WFIRST PSF ellipticity ($4.7times 10^{-4}$ per component), both of these systematic uncertainties are sufficiently close to the WFIRST tolerance level that more detailed studies of the polarization effects or more stringent requirements on polarization-sensitive instrumentation for WFIRST are required.



قيم البحث

اقرأ أيضاً

377 - Rachel Mandelbaum 2015
We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understand ing how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.
The robust estimation of the tiny distortions (shears) of galaxy shapes caused by weak gravitational lensing in the presence of much larger shape distortions due to the point-spread function (PSF) has been widely investigated. One major problem is th at most galaxy shape measurement methods are subject to bias due to pixel noise in the images (noise bias). Noise bias is usually characterized using uncorrelated noise fields; however, real images typically have low-level noise correlations due to galaxies below the detection threshold, and some types of image processing can induce further noise correlations. We investigate the effective detection significance and its impact on noise bias in the presence of correlated noise for one method of galaxy shape estimation. For a fixed noise variance, the biases in galaxy shape estimates can differ substantially for uncorrelated versus correlated noise. However, use of an estimate of detection significance that accounts for the noise correlations can almost entirely remove these differences, leading to consistent values of noise bias as a function of detection significance for correlated and uncorrelated noise. We confirm the robustness of this finding to properties of the galaxy, the PSF, and the noise field, and quantify the impact of anisotropy in the noise correlations. Our results highlight the importance of understanding the pixel noise model and its impact on detection significances when correcting for noise bias on weak lensing.
The LSST survey will provide unprecedented statistical power for measurements of dark energy. Consequently, controlling systematic uncertainties is becoming more important than ever. The LSST observing strategy will affect the statistical uncertainty and systematics control for many science cases; here, we focus on weak lensing systematics. The fact that the LSST observing strategy involves hundreds of visits to the same sky area provides new opportunities for systematics mitigation. We explore these opportunities by testing how different dithering strategies (pointing offsets and rotational angle of the camera in different exposures) affect additive weak lensing shear systematics on a baseline operational simulation, using the $rho-$statistics formalism. Some dithering strategies improve systematics control at the end of the survey by a factor of up to $sim 3-4$ better than others. We find that a random translational dithering strategy, applied with random rotational dithering at every filter change, is the most effective of those strategies tested in this work at averaging down systematics. Adopting this dithering algorithm, we explore the effect of varying the area of the survey footprint, exposure time, number of exposures in a visit, and exposure to the Galactic plane. We find that any change that increases the average number of exposures (in filters relevant to weak lensing) reduces the additive shear systematics. Some ways to achieve this increase may not be favorable for the weak lensing statistical constraining power or for other probes, and we explore the relative trade-offs between these options given constraints on the overall survey parameters.
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of ph ysics affecting growth - dynamical dark energy, extended gravity, neutrino masses, and spatial curvature - we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area. Finally, we examine the robustness of results for different fiducial cosmologies.
With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, the metrology of polarization needs to improve. In particular, it is crucial to take into account full knowledge of the noise properties when estimating polarization fraction and angle, which suffer from well-known biases. While strong simplifying assumptions have usually been made in polarization analysis, we present a method for including the full covariance matrix of the Stokes parameters in estimates for the distributions of the polarization fraction and angle. We thereby quantify the impact of the noise properties on the biases in the observational quantities. We derive analytical expressions for the pdf of these quantities, taking into account the full complexity of the covariance matrix, including the Stokes I intensity components. We perform simulations to explore the impact of the noise properties on the statistical variance and bias of the polarization fraction and angle. We show that for low variations of the effective ellipticity between the Q and U components around the symmetrical case the covariance matrix may be simplified as is usually done, with negligible impact on the bias. For S/N on intensity lower than 10 the uncertainty on the total intensity is shown to drastically increase the uncertainty of the polarization fraction but not the relative bias, while a 10% correlation between the intensity and the polarized components does not significantly affect the bias of the polarization fraction. We compare estimates of the uncertainties affecting polarization measurements, addressing limitations of estimates of the S/N, and we show how to build conservative confidence intervals for polarization fraction and angle simultaneously. This study is the first of a set of papers dedicated to the analysis of polarization measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا