ﻻ يوجد ملخص باللغة العربية
We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tylers robust M-estimator and on Ledoit-Wolfs shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data.
The only input to attain the portfolio weights of global minimum variance portfolio (GMVP) is the covariance matrix of returns of assets being considered for investment. Since the population covariance matrix is not known, investors use historical da
We consider an investor with constant absolute risk aversion who trades a risky asset with general Ito dynamics, in the presence of small proportional transaction costs. Kallsen and Muhle-Karbe (2012) formally derived the leading-order optimal tradin
The emergence of robust optimization has been driven primarily by the necessity to address the demerits of the Markowitz model. There has been a noteworthy debate regarding consideration of robust approaches as superior or at par with the Markowitz m
This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the
We extend Relative Robust Portfolio Optimisation models to allow portfolios to optimise their distance to a set of benchmarks. Portfolio managers are also given the option of computing regret in a way which is more in line with market practices than