ﻻ يوجد ملخص باللغة العربية
We consider an investor with constant absolute risk aversion who trades a risky asset with general Ito dynamics, in the presence of small proportional transaction costs. Kallsen and Muhle-Karbe (2012) formally derived the leading-order optimal trading policy and the associated welfare impact of transaction costs. In the present paper, we carry out a convex duality approach facilitated by the concept of shadow price processes in order to verify the main results of Kallsen and Muhle-Karbe under well-defined regularity conditions.
We consider the problem of option hedging in a market with proportional transaction costs. Since super-replication is very costly in such markets, we replace perfect hedging with an expected loss constraint. Asymptotic analysis for small transactions
We investigate the general structure of optimal investment and consumption with small proportional transaction costs. For a safe asset and a risky asset with general continuous dynamics, traded with random and time-varying but small transaction costs
We study superhedging of contingent claims with physical delivery in a discrete-time market model with convex transaction costs. Our model extends Kabanovs currency market model by allowing for nonlinear illiquidity effects. We show that an appropria
This paper develops the first closed-form optimal portfolio allocation formula for a spot asset whose variance follows a GARCH(1,1) process. We consider an investor with constant relative risk aversion (CRRA) utility who wants to maximize the expecte
We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available marke