ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering Approaches for Global Minimum Variance Portfolio

71   0   0.0 ( 0 )
 نشر من قبل Jinwoo Park
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English
 تأليف Jinwoo Park




اسأل ChatGPT حول البحث

The only input to attain the portfolio weights of global minimum variance portfolio (GMVP) is the covariance matrix of returns of assets being considered for investment. Since the population covariance matrix is not known, investors use historical data to estimate it. Even though sample covariance matrix is an unbiased estimator of the population covariance matrix, it includes a great amount of estimation error especially when the number of observed data is not much bigger than number of assets. As it is difficult to estimate the covariance matrix with high dimensionality all at once, clustering stocks is proposed to come up with covariance matrix in two steps: firstly, within a cluster and secondly, between clusters. It decreases the estimation error by reducing the number of features in the data matrix. The motivation of this dissertation is that the estimation error can still remain high even after clustering, if a large amount of stocks is clustered together in a single group. This research proposes to utilize a bounded clustering method in order to limit the maximum cluster size. The result of experiments shows that not only the gap between in-sample volatility and out-of-sample volatility decreases, but also the out-of-sample volatility gets reduced. It implies that we need a bounded clustering algorithm so that maximum clustering size can be precisely controlled to find the best portfolio performance.



قيم البحث

اقرأ أيضاً

We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available marke t returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tylers robust M-estimator and on Ledoit-Wolfs shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data.
We introduce a $k$-fold boosted version of our Boostrapped Average Hierarchical Clustering cleaning procedure for correlation and covariance matrices. We then apply this method to global minimum variance portfolios for various values of $k$ and compa re their performance with other state-of-the-art methods. Generally, we find that our method yields better Sharpe ratios after transaction costs than competing filtering methods, despite requiring a larger turnover.
In this study, we construct two tests for the weights of the global minimum variance portfolio (GMVP) in a high-dimensional setting, namely, when the number of assets $p$ depends on the sample size $n$ such that $frac{p}{n}to c in (0,1)$ as $n$ tends to infinity. In the case of a singular covariance matrix with rank equal to $q$ we assume that $q/nto tilde{c}in(0, 1)$ as $ntoinfty$. The considered tests are based on the sample estimator and on the shrinkage estimator of the GMVP weights. We derive the asymptotic distributions of the test statistics under the null and alternative hypotheses. Moreover, we provide a simulation study where the power functions and the receiver operating characteristic curves of the proposed tests are compared with other existing approaches. We observe that the test based on the shrinkage estimator performs well even for values of $c$ close to one.
This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations.
Under mean-variance-utility framework, we propose a new portfolio selection model, which allows wealth and time both have influences on risk aversion in the process of investment. We solved the model under a game theoretic framework and analytically derived the equilibrium investment (consumption) policy. The results conform with the facts that optimal investment strategy heavily depends on the investors wealth and future income-consumption balance as well as the continuous optimally consumption process is highly dependent on the consumption preference of the investor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا