ترغب بنشر مسار تعليمي؟ اضغط هنا

Sudden gap-closure across the topological phase transition in Bi$_{2-x}$In$_{x}$Se$_{3}$

59   0   0.0 ( 0 )
 نشر من قبل Rui Lou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase transition from a topological insulator to a trivial band insulator is studied by angle-resoled photoemission spectroscopy on Bi$_{2-x}$In$_{x}$Se$_{3}$ single crystals. We first report the complete evolution of the bulk band structures throughout the transition. The robust surface state and the bulk gap size ($sim$ 0.50 eV) show no significant change upon doping for $x$ = 0.05, 0.10 and 0.175. At $x$ $geq$ 0.225, the surface state completely disappears and the bulk gap size increases, suggesting a sudden gap-closure and topological phase transition around $x sim$ 0.175$-$0.225. We discuss the underlying mechanism of the phase transition, proposing that it is governed by the combined effect of spin-orbit coupling and interactions upon band hybridization. Our study provides a new venue to investigate the mechanism of the topological phase transition induced by non-magnetic impurities.

قيم البحث

اقرأ أيضاً

Topological insulators are a class of band insulators with non-trivial topology, a result of band inversion due to the strong spin-orbit coupling. The transition between topological and normal insulator can be realized by tuning the spin-orbit coupli ng strength, and has been observed experimentally. However, the impact of chemical disorders on the topological phase transition was not addressed in previous studies. Herein, we report a systematic scanning tunneling microscopy/spectroscopy and first-principles study of the topological phase transition in single crystals of In doped Bi$_2$Se$_3$. Surprisingly, no band gap closure was observed across the transition. Furthermore, our spectroscopic-imaging results reveal that In defects are extremely effective suppressors of the band inversion, which leads to microscopic phase separation of topological-insulator-like and normal-insulator-like nano regions across the transition. The observed topological electronic inhomogeneity demonstrates the significant impact of chemical disorders in topological materials, shedding new light on the fundamental understanding of topological phase transition.
Topological insulators (TIs) are newly discovered states of matter with robust metallic surface states protected by the topological properties of the bulk wavefunctions. A quantum phase transition (QPT) from a TI to a conventional insulator and a cha nge in topological class can only occur when the bulk band gap closes. In this work, we have utilized time-domain terahertz spectroscopy (TDTS) to investigate the low frequency conductance in (Bi$_{1-x}$In$_x$)$_2$Se$_3$ as we tune through this transition by indium substitution. Above certain substitution levels we observe a collapse in the transport lifetime that indicates the destruction of the topological phase. We associate this effect with the threshold where states from opposite surfaces hybridize. The substitution level of the threshold is thickness dependent and only asymptotically approaches the bulk limit $x approx 0.06$ where a maximum in the mid-infrared absorption is exhibited. This absorption can be identified with the bulk band gap closing and a change in topological class. The correlation length associated with the QPT appears as the evanescent length of the surface states. The observation of the thickness-dependent collapse of the transport lifetime shows the unusual role that finite size effects play in this topological QPT.
The magnetic, magneto-transport and ARPES studies of Fe and S co-doped Bi2Se3 were investigated. With doping concentration magneto-resistance (MR) gradually decreases and for a certain doping concentration giant negative MR is observed which persists up to room temperature. Magnetic measurement indicates that the negative MR is observed when ferromagnetic ordering is induced with Fe doping. The magnetic ordering can be attributed with the RKKY interaction. Positive MR reappears with larger doping concentration which may be attributed to the decrease of FM ordering due to the turning off of the spin-orbit coupling leading to the destruction of non-trivial bulk state. This in-effect de-hybridizes the conduction band with the Fe spin. The ARPES data also indicates that above a critical doping concentration (x>0.09) the non-trivial bulk state is completely destroyed.
The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-fiel d approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.
We present a detailed investigation of the magnetic and structural properties of magnetically doped 3D topological insulator Bi2Se3. From muon spin relaxation measurements in zero magnetic field, we find that even 5% Fe doping on the Bi site turns th e full volume of the sample magnetic at temperatures as high as ~250 K. This is also confirmed by magnetization measurements. Two magnetic phases are identified; the first is observed between ~10-250 K while the second appears below ~10 K. These cannot be attributed to impurity phases in the samples. We discuss the nature and details of the observed magnetism and its dependence on doping level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا