ﻻ يوجد ملخص باللغة العربية
The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.
We report on a combined measurement of high-resolution x-ray diffraction on powder and Raman scattering on single crystalline NiS2-xSex samples that exhibit the insulator-metal transition with Se doping. Via x-rays, an abrupt change in the bond lengt
The metal to insulator transition in the charge transfer NiS{2-x}Se{x} compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se-alloying (lattice expansion)
We present a study of the structure, the electric resistivity, the magnetic susceptibility, and the thermal expansion of La$_{1-x}$Eu$_x$CoO$_3$. LaCoO$_3$ shows a temperature-induced spin-state transition around 100 K and a metal-insulator transitio
We present a detailed investigation of the magnetic and structural properties of magnetically doped 3D topological insulator Bi2Se3. From muon spin relaxation measurements in zero magnetic field, we find that even 5% Fe doping on the Bi site turns th
We present angle resolved photoemission (ARPES) data on Na-doped Ca$_2$CuO$_2$Cl$_2$. We demonstrate that the chemical potential shifts upon doping the system across the insulator to metal transition. The resulting low energy spectra reveal a gap str