ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of huge thermal spin currents in magnetic multilayers

362   0   0.0 ( 0 )
 نشر من قبل Rafael Ramos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal spin pumping constitutes a novel mechanism for generation of spin currents; however their weak intensity constitutes a major roadblock for its usefulness. We report a phenomenon that produces a huge spin current in the central region of a multilayer system, resulting in a giant spin Seebeck effect in a structure formed by repetition of ferromagnet/metal bilayers. The result is a consequence of the interconversion of magnon and electron spin currents at the multiple interfaces. This work opens the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics.

قيم البحث

اقرأ أيضاً

The demand for compact, high-speed and energy-saving circuitry urges higher efficiency of spintronic devices that can offer a viable alternative for the current electronics. The route towards this goal suggests implementing two-dimensional (2D) mater ials that provide large spin polarization of charge current together with the long-distance transfer of the spin information. Here, for the first time, we experimentally demonstrate a large spin polarization of the graphene conductivity ($approx 14%$) arising from a strong induced exchange interaction in proximity to a 2D layered antiferromagnetic. The strong coupling of charge and spin currents in graphene with high efficiency of spin current generation, comparable to that of metallic ferromagnets, together with the observation of spin-dependent Seebeck and anomalous Hall effects, all consistently confirm the magnetic nature of graphene. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent interlayer antiferromagnet, also provides a tool to read out a single magnetic sub-lattice. The first time observations of the electrical and thermal generation of spin currents by magnetic graphene suggest it as the ultimate building block for ultra-thin magnetic memory and sensory devices, combining gate tunable spin-dependent conductivity, long-distance spin transport and spin-orbit coupling all in a single 2D material.
A comprehensive theoretical investigation on the field-driven reorientation transitions in uniaxial multilayers with antiferromagnetic coupling is presented. It is based on a complete survey of the one-dimensional solutions for the basic phenomenolog ical (micromagnetic) model that describes the magnetic properties of finite stacks made from ferromagnetic layers coupled antiferromagnetically through spacer layers. The general structure of the phase diagrams is analysed. At a high ratio of uniaxial anisotropy to antiferromagnetic interlayer exchange, only a succession of collinear magnetic states is possible. With increasing field first-order (metamagnetic) transitions occur from the antiferromagnetic ground-state to a set of degenerate ferrimagnetic states and to the saturated ferromagnetic state. At low anisotropies, a first-order transition from the antiferromagnetic ground-state to an inhomogeneous spin-flop state occurs. Between these two regions, transitional magnetic phases occupy the range of intermediate anisotropies. Detailed and quantitative phase diagrams are given for the basic model of antiferromagnetic multilayer systems with N = 2 to 16 layers. The connection of the phase diagrams with the spin-reorientation transitions in bulk antiferromagnets is discussed. The limits of low anisotropy and large numbers of layers are analysed by two different representations of the magnetic energy, namely, in terms of finite chains of staggered vectors and in a general continuum form. It is shown that the phenomena widely described as ``surface spin-flop are driven only by the cut exchange interactions and the non-compensated magnetic moment at the surface layers of a stacked antiferromagnetic system.
Based on micromagnetic simulations, we report on a novel helical magnetic structure in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers. Confined between antiparallel hard magnetic moments, a helix with a turn of 180$^{circ}$ is stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal field created by exchange interaction and anisotropy. Since the internal field stores magnetic energy, the helix can serve as an energy-storing element in spin-based nanodevices. Due to the significantly different magnetic resonance frequencies, the ferromagnetic and helical ground states are easy to distinguish in a broadband ferromagnetic resonance experiment.
In this paper we analyze in details the electronic properties of (Co/Ni) multilayers, a model system for spintronics devices. We use magneto-optical Kerr (MOKE), spin-polarized photoemission spectroscopy (SRPES), x-ray magnetic circular dichroism (XM CD) and anomalous surface diffraction experiments to investigate the electronic properties and perpendicular magnetic anisotropy (PMA) in [Co(x)/Ni(y)] single-crystalline stacks grown by molecular beam epitaxy.
Terahertz emission spectroscopy of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin-orbit interaction at highest freq uencies but has also paved the way to applications such as efficient and ultrabroadband emitters of terahertz electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of terahertz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, dysprosium cobalt (DyCo$_5$), gadolinium iron (Gd$_{24}$Fe$_{76}$), Magnetite (Fe$_3$O$_4$) and iron rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnets conduction electrons but also on the specific interface conditions, thereby suggesting terahertz emission spectroscopy to be a highly surface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا