ﻻ يوجد ملخص باللغة العربية
Terahertz emission spectroscopy of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin-orbit interaction at highest frequencies but has also paved the way to applications such as efficient and ultrabroadband emitters of terahertz electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of terahertz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, dysprosium cobalt (DyCo$_5$), gadolinium iron (Gd$_{24}$Fe$_{76}$), Magnetite (Fe$_3$O$_4$) and iron rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnets conduction electrons but also on the specific interface conditions, thereby suggesting terahertz emission spectroscopy to be a highly surface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.
We have measured the inverse spin Hall effect (ISHE) in textit{n}-Ge at room temperature. The spin current in germanium was generated by spin pumping from a CoFeB/MgO magnetic tunnel junction in order to prevent the impedance mismatch issue. A clear
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The d
In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored
High spin to charge conversion efficiency is the requirement for the spintronics devices which is governed by spin pumping and inverse spin Hall effect (ISHE). In last one decade, ISHE and spin pumping are heavily investigated in ferromagnet/ heavy m
Large charge-to-spin conversion (spin Hall angle) and spin Hall conductivity are prerequisites for development of next generation power efficient spintronic devices. In this context, heavy metals (e.g. Pt, W etc.), topological insulators, antiferroma