ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides

427   0   0.0 ( 0 )
 نشر من قبل Alisa Javadi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light can be efficiently confined by random multiple scattering leading to Anderson localization. Here we investigate the effect of such disorder-induced cavities on the emission dynamics of single quantum dots embedded in disordered photonic-crystal waveguides. We present time-resolved measurements of both the total emission from Anderson-localized cavities and from single emitters that are coupled to the cavities. We observe both strongly inhibited and enhanced decay rates relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 2 in without any control on the quantum dot - cavity detuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum Purcell factor of 23.8 is recorded, which lies at the onset of the strong coupling regime. The presented data quantify the potential of naturally occurring Anderson-localized cavities for controlling and enhancing the light-matter interaction strength, which is of relevance not only for cavity quantum-electrodynamics experiments but potentially also for efficient energy harvesting and controllable random lasing.



قيم البحث

اقرأ أيضاً

We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length show s a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.
We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free spa ce is proposed as all-optical amplifier. Using the unique features of the photonic crystals to control and guide the light, we have properly chosen the frequency at which only one mode (odd mode) becomes the propagating mode in the coupled photonic crystal waveguide, whereas another mode (even mode) is completely reflected from the guiding structure. Under this condition, the all-optical amplification is fully realized. The amplification coefficient for the continuous signal and the Gaussian pulse is calculated.
All-optical amplification of the light pulse in a weakly coupled two nonlinear photonic crystal waveguides (PCWs) is proposed. We consider pillar-type PCWs, which consist of the periodically distributed circular rods made from a Kerr-type dielectric material. Dispersion diagrams of the symmetric and antisymmetric modes are calculated. The operating frequency is properly chosen to be located at the edge of the dispersion diagram of the modes. In the linear case no propagation modes are excited at this frequency, however, in case of nonlinear medium when the amplitude of the injected signal is above some threshold value, the solitons are formed and they are propagating inside the coupled nonlinear PCWs. Near field distributions of the light pulse propagation inside the coupled nonlinear PCWs and the output powers of the registered signals are studied in a detail. The amplification coefficient is calculated at the various amplitudes of the launched signal. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as all-optical digital amplifier.
We report a study of the quantum dot emission in short photonic crystal waveguides. We observe that the quantum dot photoluminescence intensity and decay rate are strongly enhanced when the emission energy is in resonance with Fabry-Perot cavity mode s in the slow-light regime of the dispersion curve. The experimental results are in agreement with previous theoretical predictions and further supported by three-dimensional finite element simulation. Our results show that the combination of slow group velocity and Fabry-Perot cavity resonance provides an avenue to efficiently channel photons from quantum dots into waveguides for integrated quantum photonic applications.
Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal me mbrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا