ترغب بنشر مسار تعليمي؟ اضغط هنا

Configurations of Rank-40r Extremal Even Unimodular Lattices (r=1,2,3)

121   0   0.0 ( 0 )
 نشر من قبل Scott Kominers
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that if L is an extremal even unimodular lattice of rank 40r with r=1,2,3 then L is generated by its vectors of norms 4r and 4r+2. Our result is an extension of Ozekis result for the case r=1.



قيم البحث

اقرأ أيضاً

We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of the second author for extremal Type II lattices. Specifically, we show that for $n in {8, 24, 32, 48, 56, 72, 96}$ every extremal Type I I code of length $n$ is generated by its codewords of minimal weight. Where Ozeki and Kominers used spherical harmonics and weighted theta functions, we use discrete harmonic polynomials and harmonic weight enumerators. Along we way we introduce $tfrac12$-designs as a discrete analog of Venkovs spherical designs of the same name.
A positive definite even Hermitian lattice is called emph{even universal} if it represents all even positive integers. We introduce a method to get all even universal binary Hermitian lattices over imaginary quadratic fields $Q{-m}$ for all positive square-free integers $m$ and we list optimal criterions on even universality of Hermitian lattices over $Q{-m}$ which admits even universal binary Hermitian lattices.
We show that, if L is an extremal Type II lattice of rank 40 or 80, then L is generated by its vectors of norm min(L)+2. This sharpens earlier results of Ozeki, and the second author and Abel, which showed that such lattices L are generated by their vectors of norms min(L) and min(L)+2.
We study body-and-hinge and panel-and-hinge chains in R^d, with two marked points: one on the first body, the other on the last. For a general chain, the squared distance between the marked points gives a Morse-Bott function on a torus configuration space. Maximal configurations, when the distance between the two marked points reaches a global maximum, have particularly simple geometrical characterizations. The three-dimensional case is relevant for applications to robotics and molecular structures.
75 - Xizhi Liu , Dhruv Mubayi , 2021
For every positive integer $t$ we construct a finite family of triple systems ${mathcal M}_t$, determine its Tur{a}n number, and show that there are $t$ extremal ${mathcal M}_t$-free configurations that are far from each other in edit-distance. We al so prove a strong stability theorem: every ${mathcal M}_t$-free triple system whose size is close to the maximum size is a subgraph of one of these $t$ extremal configurations after removing a small proportion of vertices. This is the first stability theorem for a hypergraph problem with an arbitrary (finite) number of extremal configurations. Moreover, the extremal hypergraphs have very different shadow sizes (unlike the case of the famous Turan tetrahedron conjecture). Hence a corollary of our main result is that the boundary of the feasible region of ${mathcal M}_t$ has exactly $t$ global maxima.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا