ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Anisotropic Magnetoresistance in a Quantum Anomalous Hall Insulator

66   0   0.0 ( 0 )
 نشر من قبل Nitin Samarth
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When a three-dimensional (3D) ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon - the quantum anomalous Hall effect - provides a conceptually new platform for studies of edge-state transport, distinct from the more extensively studied integer and fractional quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt driven crossover from predominantly edge state transport to diffusive transport in Cr-doped (Bi,Sb)2Te3 thin films, as the system transitions from a quantum anomalous Hall insulator to a gapless, ferromagnetic topological insulator. The crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain using the Landauer-Buttiker formalism. Our methodology provides a powerful means of quantifying edge state contributions to transport in temperature and chemical potential regimes far from perfect quantization.

قيم البحث

اقرأ أيضاً

Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac semimetal Cd3As2 of giant aniso tropic magnetoresistance and its transverse version, called the planar Hall effect. The relative anisotropic magnetoresistance is negative and up to -68% at 2 K and 10 T. The high anisotropy and the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures of Weyl and Dirac fermions other than negative magnetoresistance.
Recent work has extended topological band theory to open, non-Hermitian Hamiltonians, yet little is understood about how non-Hermiticity alters the topological quantization of associated observables. We address this problem by studying the quantum an omalous Hall effect (QAHE) generated in the Dirac surface states of a 3D time-reversal-invariant topological insulator (TI) that is proximity-coupled to a metallic ferromagnet. By constructing a contact self-energy for the ferromagnet, we show that in addition to generating a mass gap in the surface spectrum, the ferromagnet can introduce a non-Hermitian broadening term, which can obscure the mass gap in the spectral function. We calculate the Hall conductivity for the effective non-Hermitian Hamiltonian describing the heterostructure and show that it is no longer quantized despite being classified as a Chern insulator based on non-Hermitian topological band theory. Our results indicate that the QAHE will be challenging to experimentally observe in ferromagnet-TI heterostructures due to the finite lifetime of quasi-particles at the interface.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin g topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in to pological insulators via proximity to a magnetic material offers a promising pathway towards achieving QAH effect at high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single layers of MnBi2Te4 (a 2D ferromagnetic insulator) with ultra-thin Bi2Te3 in the middle, and is predicted to yield a robust QAH insulator phase with a bandgap well above thermal energy at room temperature (25 meV). Here we demonstrate the growth of a 1SL MnBi2Te4 / 4QL Bi2Te3 /1SL MnBi2Te4 heterostructure via molecular beam epitaxy, and probe the electronic structure using angle resolved photoelectron spectroscopy. We observe strong hexagonally warped massive Dirac Fermions and a bandgap of 75 meV. The magnetic origin of the gap is confirmed by the observation of broken time reversal symmetry and the exchange-Rashba effect, in excellent agreement with density functional theory calculations. These findings provide insights into magnetic proximity effects in topological insulators, that will move lossless transport in topological insulators towards higher temperature.
We observe an unusual behavior of the spin Hall magnetoresistance (SMR) measured in a Pt ultra-thin film deposited on a ferromagnetic insulator, which is a tensile-strained LaCoO3 (LCO) thin film with the Curie temperature Tc=85K. The SMR displays a strong magnetic-field dependence below Tc, with the SMR amplitude continuing to increase (linearly) with increasing the field far beyond the saturation value of the ferromagnet. The SMR amplitude decreases gradually with raising the temperature across Tc and remains measurable even above Tc. Moreover, no hysteresis is observed in the field dependence of the SMR. These results indicate that a novel low-dimensional magnetic system forms on the surface of LCO and that the Pt/LCO interface decouples magnetically from the rest of the LCO thin film. To explain the experiment, we revisit the derivation of the SMR corrections and relate the spin-mixing conductances to the microscopic quantities describing the magnetism at the interface. Our results can be used as a technique to probe quantum magnetism on the surface of a magnetic insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا