ترغب بنشر مسار تعليمي؟ اضغط هنا

Loss of Hall Conductivity Quantization in a Non-Hermitian Quantum Anomalous Hall Insulator

201   0   0.0 ( 0 )
 نشر من قبل Timothy Mathew Philip
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has extended topological band theory to open, non-Hermitian Hamiltonians, yet little is understood about how non-Hermiticity alters the topological quantization of associated observables. We address this problem by studying the quantum anomalous Hall effect (QAHE) generated in the Dirac surface states of a 3D time-reversal-invariant topological insulator (TI) that is proximity-coupled to a metallic ferromagnet. By constructing a contact self-energy for the ferromagnet, we show that in addition to generating a mass gap in the surface spectrum, the ferromagnet can introduce a non-Hermitian broadening term, which can obscure the mass gap in the spectral function. We calculate the Hall conductivity for the effective non-Hermitian Hamiltonian describing the heterostructure and show that it is no longer quantized despite being classified as a Chern insulator based on non-Hermitian topological band theory. Our results indicate that the QAHE will be challenging to experimentally observe in ferromagnet-TI heterostructures due to the finite lifetime of quasi-particles at the interface.



قيم البحث

اقرأ أيضاً

When a three-dimensional (3D) ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall condu ctance. The recent realization of this phenomenon - the quantum anomalous Hall effect - provides a conceptually new platform for studies of edge-state transport, distinct from the more extensively studied integer and fractional quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt driven crossover from predominantly edge state transport to diffusive transport in Cr-doped (Bi,Sb)2Te3 thin films, as the system transitions from a quantum anomalous Hall insulator to a gapless, ferromagnetic topological insulator. The crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain using the Landauer-Buttiker formalism. Our methodology provides a powerful means of quantifying edge state contributions to transport in temperature and chemical potential regimes far from perfect quantization.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin g topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
113 - G. Jug , K. Ziegler 1998
The dynamical transport properties near the integer quantum Hall transition are investigated at zero temperature by means of the Dirac fermion approach. These properties have been studied experimentally at low frequency omega and low temperature near the nu=1 filling factor Hall transition, with the observation of an anusual broadening and an overall increase of the longitudinal conductivity Re sigma_{xx} as a function of omega. We find in our approach that, unlike for normal metals, the longitudinal conductivity increases as the frequency increases, whilst the width Delta B (or Delta nu) of the conductivity peak near the Hall transition increases. These findings are in reasonable quantitative agreement with recent experiments by Engel et al. as well as with recent numerical work by Avishai and Luck.
127 - Jue Jiang , Di Xiao , Fei Wang 2019
The quantum anomalous Hall (QAH) effect is a quintessential consequence of non-zero Berry curvature in momentum-space. The QAH insulator harbors dissipation-free chiral edge states in the absence of an external magnetic field. On the other hand, the topological Hall (TH) effect, a transport hallmark of the chiral spin textures, is a consequence of real-space Berry curvature. While both the QAH and TH effects have been reported separately, their coexistence, a manifestation of entangled chiral edge states and chiral spin textures, has not been reported. Here, by inserting a TI layer between two magnetic TI layers to form a sandwich heterostructure, we realized a concurrence of the TH effect and the QAH effect through electric field gating. The TH effect is probed by bulk carriers, while the QAH effect is characterized by chiral edge states. The appearance of TH effect in the QAH insulating regime is the consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occur during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures potentially provides a unique platform for proof-of-concept dissipationless spin-textured spintronic applications.
Topological insulators doped with transition metals have recently been found to host a strong ferromagnetic state with perpendicular to plane anisotropy as well as support a quantum Hall state with edge channel transport, even in the absence of an ex ternal magnetic field. It remains unclear however why a robust magnetic state should emerge in materials of relatively low crystalline quality and dilute magnetic doping. Indeed, recent experiments suggest that the ferromagnetism exhibits at least some superparamagnetic character. We report on transport measurements in a sample that shows perfect quantum anomalous Hall quantization, while at the same time exhibits traits in its transport data which suggest inhomogeneities. We speculate that this may be evidence that the percolation path interpretation used to explain the transport during the magnetic reversal may actually have relevance over the entire field range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا