ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct correlation between aromatization of carbon- rich organic matter and its visible electronic absorption edge

61   0   0.0 ( 0 )
 نشر من قبل Nicola Ferralis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of the electronic absorption edge of type I, II and III kerogen is studied by diffuse reflectance UV-Visible absorption spectroscopy. The functional form of the electronic absorption edge for all kerogens measured is in excellent agreement with the Urbach tail phenomenology. The Urbach decay width extracted from the exponential fit within the visible range is strongly correlated with the aliphatic/aromatic ratio in isolated kerogen, regardless of the kerogen type. No correlation is found between the decay width and the average size of aromatic clusters, which is explained in terms of a non-linear increase in optical absorption with increasing size of the aromatic clusters determined by 13C NMR. Further, absorption spectra calculated with density functional theory calculations on proxy ensemble models of kerogen are in excellent agreement with the experimental results. The correlation of the decay width with conventional maturity indicators such as vitrinite reflectance is found to be good within a particular kerogen type, but not consistent across different kerogen types, reflecting systematic variations in bulk composition for different type kerogen types with the same vitrinite reflectance. Thus, diffuse reflectance visible absorption spectroscopy is presented as a rapid, calibrated and non-destructive method to monitor both the maturity and the chemical composition of kerogen. The chemical insight of kerogen in relation to its optical absorption provided by this methodology may serve for rapid screening of kerogen for electronics and optical devices in place of functionalized produced carbon.


قيم البحث

اقرأ أيضاً

The electronic wavefunctions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic d evices such as organic solar cells. In these devices, charge transport and interfaces between multiple layers occur along the thickness or vertical direction, and thus such electronic interactions are crucial in determining the device properties. Here, we introduce a new in-situ spectroscopic ellipsometry data analysis method called DART with the ability to directly probe electronic coupling due to intermolecular interactions along the thickness direction using vacuum-deposited organic semiconductor thin films as a model system. The analysis, which does not require any model fitting, reveals direct observations of electronic coupling between frontier orbitals under optical excitations leading to delocalization of the corresponding electronic wavefunctions with thickness or, equivalently, number of molecules away from the interface in C60 and MeO-TPD deposited on an insulating substrate (SiO2). Applying the same methodology for C60 deposited on phthalocyanine thin films, the analyses shows strong, anomalous features - in comparison to C60 deposited on SiO2 - of the electronic wavefunctions corresponding to specific excitation energies in C60 and phthalocyanines. Translation of such interactions in terms of dielectric constants reveals plasmonic type resonance absorptions resulting from oscillations of the excited state wavefunctions between the two materials across the interface. Finally, reproducibility, angstrom-level sensitivity and simplicity of the method are highlighted showcasing its applicability for studying electronic coupling between any vapor-deposited material systems where real-time measurements during deposition are possible.
In this paper we study the effect of absorption peak correlation in finite length carbon nanotubes and graphene nanoribbons. It is shown, in the orthogonal {pi}-orbital tight-binding model with the nearest neighbor approximation, that if the ribbon w idth is a half of the tube circumference the effect takes place for all achiral ribbons (zigzag, armchair and bearded), and corresponding tubes, starting from lengths of about 30 nm. This correlation should be useful in designing nanoribbon-based optoelectronics devices fully integrated into a single layer of graphene.
We have measured the resistance noise of copper metallic wires during a tensile stress. The time variation of the main resistance is continuous up to the wire breakdown, but its fluctuations reveal the intermittent and heterogeneous character of plas tic flow. We show in particular direct correlations between strengthening mechanisms and noise spectra characteristics.
We have experimentally elucidated the correlation between inverse and direct Edelstein Effects (EEs) at Bi2O3/Cu interface by means of spin absorption method using lateral spin valve structure. The conversion coefficient {lambda} for the inverse EE i s determined by the electron momentum scattering time in the interface, whereas the coefficient q for the direct EE is by the spin ejection time from the interface. For the Bi2O3/Cu interface, the spin ejection time was estimated to be ~ 53 fs and the momentum scattering time ~ 13 fs at room temperature, both of which contribute to the total momentum relaxation time that defines the resistivity of the interface. The effective spin Hall angle for the Bi2O3/Cu interface amounts to ~ 10% which is comparable to commonly used spin Hall material such as platinum. Interesting to note is that the experimentally obtained Edelstein resistances given by the output voltage divided by the injection current for direct and inverse effects are the same. Analysis based on our phenomenological model reveals that the larger the momentum scattering time, the more efficient direct EE; and the smaller spin ejection time, the more efficient inverse EE.
Based on density functional theory, the electronic and optical properties of hybrid organic/perovskite crystals are thoroughly investigated. We consider the mono-crystalline 4FPEPI as material model and demonstrate the optical process is governed by three active Bloch states at the {Gamma} point of the reduced Brillouin zone with a reverse ordering compared to tetrahedrally bonded semiconductors. Giant spin-orbit coupling effects and optical activities are subsequently inferred from symmetry analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا