ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct correlation between strengthening mechanisms and electrical noise in strained copper wires

428   0   0.0 ( 0 )
 نشر من قبل Alain Pautrat
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the resistance noise of copper metallic wires during a tensile stress. The time variation of the main resistance is continuous up to the wire breakdown, but its fluctuations reveal the intermittent and heterogeneous character of plastic flow. We show in particular direct correlations between strengthening mechanisms and noise spectra characteristics.


قيم البحث

اقرأ أيضاً

The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just ener gy) of strained graphene by an accurate off-lattice Quantum Monte Carlo (QMC) correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene (SEM) at low strain, multi-determinant Heitler-London correlations stabilize between $simeq$8.5% and $simeq$15% strain an insulating Kekule-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state, the DIM state prevails over the competing antiferromagnetic insulating (AFI) state favored by density-functional calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain conditions 1D metallic interface states lying in the bulk energy gap.
The Metal-Insulator transition (MIT) in VO2 is characterized by the complex interplay among lattice, electronic and orbital degrees of freedom. In this contribution we investigated the strain-modulation of the orbital hierarchy and the influence over macroscopic properties of the metallic phase of VO2 such as Fermi Level (FL) population and metallicity, i.e., the material ability to screen an electric field, by means of temperature-dependent X-ray Absorption Near Edge Structure (XANES) and Resonant Photoemission spectroscopy (ResPES). We demonstrate that the MIT in strained VO2 is of the Filling Control type, hence it is generated by electron correlation effects. In addition, we show that the MIT in Nanostructured (NS) disordered VO2, where the structural phase transition is quenched, is driven by electron correlation. Therefore a fine tuning of the correlation could lead to a precise control and tuning of the transition features.
We have performed electrical resistivity and DC magnetization measurements as a function of temperature, on polycrystalline samples of phase separated LaPrCaMnO. We have used the General Effective Medium Theory to obtain theoretical resistivity vs. t emperature curves corresponding to different fixed ferromagnetic volume fraction values, assuming that the sample is a mixture of typical metallic like and insulating manganites. By comparing this data with our experimental resistivity curves we have obtained the relative ferromagnetic volume fraction of our sample as a function of temperature. This result matches with the corresponding magnetization data in excellent agreement, showing that a mixed phase scenario is the key element to explain both the magnetic and transport properties in the present compound.
The evolution of the electronic absorption edge of type I, II and III kerogen is studied by diffuse reflectance UV-Visible absorption spectroscopy. The functional form of the electronic absorption edge for all kerogens measured is in excellent agreem ent with the Urbach tail phenomenology. The Urbach decay width extracted from the exponential fit within the visible range is strongly correlated with the aliphatic/aromatic ratio in isolated kerogen, regardless of the kerogen type. No correlation is found between the decay width and the average size of aromatic clusters, which is explained in terms of a non-linear increase in optical absorption with increasing size of the aromatic clusters determined by 13C NMR. Further, absorption spectra calculated with density functional theory calculations on proxy ensemble models of kerogen are in excellent agreement with the experimental results. The correlation of the decay width with conventional maturity indicators such as vitrinite reflectance is found to be good within a particular kerogen type, but not consistent across different kerogen types, reflecting systematic variations in bulk composition for different type kerogen types with the same vitrinite reflectance. Thus, diffuse reflectance visible absorption spectroscopy is presented as a rapid, calibrated and non-destructive method to monitor both the maturity and the chemical composition of kerogen. The chemical insight of kerogen in relation to its optical absorption provided by this methodology may serve for rapid screening of kerogen for electronics and optical devices in place of functionalized produced carbon.
Motivated by recent experimental observations of Tongay et al. [Tongay et al., Nano Letters, 12(11), 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found t hat with increasing strain: (1) the E and E Raman peaks (E1g and E2g in bulk) exhibit significant red shifts (up to 30 cm-1), (2) the position of the A1 peak remains at 180 cm-1 (A1g in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear and (4) the electronic band structure undergoes a direct to indirect bandgap crossover under 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational and optical properties of single layer MoSe2 and similar MX2 dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا