ترغب بنشر مسار تعليمي؟ اضغط هنا

Random phase-free kinoform for large objects

238   0   0.0 ( 0 )
 نشر من قبل Tomoyoshi Shimobaba Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a random phase-free kinoform for large objects. When not using the random phase in kinoform calculation, the reconstructed images from the kinoform are heavy degraded, like edge-only preserved images. In addition, the kinoform cannot record an entire object that exceeds the kinoform size because the object light does not widely spread. In order to avoid this degradation and to widely spread the object light, the random phase is applied to the kinoform calculation; however, the reconstructed image is contaminated by speckle noise. In this paper, we overcome this problem by using our random phase-free method and error diffusion method.

قيم البحث

اقرأ أيضاً

We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.
Concurrency has been a subject of study for more than 50 years. Still, many developers struggle to adapt their sequential code to be accessed concurrently. This need has pushed for generic solutions and specific concurrent data structures. Wait-fre e universal constructs are attractive as they can turn a sequential implementation of any object into an equivalent, yet concurrent and wait-free, implementation. While highly relevant from a research perspective, these techniques are of limited practical use when the underlying object or data structure is sizable. The copy operation can consume much of the CPUs resources and significantly degrade performance. To overcome this limitation, we have designed CX, a multi-instance-based wait-free universal construct that substantially reduces the amount of copy operations. The construct maintains a bounded number of instances of the object that can potentially be brought up to date. We applied CX to several sequential implementations of data structures, including STL implementations, and compared them with existing wait-free constructs. Our evaluation shows that CX performs significantly better in most experiments, and can even rival with hand-written lock-free and wait-free data structures, simultaneously providing wait-free progress, safe memory reclamation and high reader scalability.
Our proposed method of random phase-free holography using virtual convergence light can obtain large reconstructed images exceeding the size of the hologram, without the assistance of random phase. The reconstructed images have low-speckle noise in t he amplitude and phase-only holograms (kinoforms); however, in low-resolution holograms, we obtain a degraded image quality compared to the original image. We propose an iterative random phase-free method with virtual convergence light to address this problem.
We demonstrate the possibility to create optical beams with phase singularities engraved into exotic intensity landscapes imitating the shapes of a large variety of diverse plane curves. To achieve this aim, we have developed a method for directly en coding the geometric properties of some selected curve into a single azimuthal phase factor without passing through indirect encryption methods based on lengthy numerical procedures. The outcome is utilized to mould the optic axis distribution of a liquid-crystal-based inhomogeneous waveplate. The latter is finally used to sculpt the wavefront of an input optical gaussian beam via Pancharatnam-Berry phase.
High-quality crystals without inversion symmetry are the conventional platform to achieve optical frequency conversion via three wave-mixing. In bulk crystals, efficient wave-mixing relies on phase-matching configurations, while at the micro- and nan o-scale it requires resonant mechanisms that enhance the nonlinear light-matter interaction. These strategies commonly result in wavelength-specific performances and narrowband applications. Disordered photonic materials, made up of a random assembly of optical nonlinear crystals, enable a broadband tunability in the random quasi-phase-matching (RQPM) regime and do not require high-quality materials. Here, we combine resonances and disorder by implementing RQPM in Mie-resonant spheres of a few microns realized by the bottom-up assembly of barium titanate nano-crystals. The measured second harmonic generation (SHG) reveals a combination of broadband and resonant wave mixing, in which Mie resonances drive and enhance the SHG, while the disorder keeps the phase-matching conditions relaxed. This new phase-matching regime can be described by a random walk in the SHG complex plane whose step lengths depend on the local field enhancement within the micro-sphere. Our nano-crystals assemblies provide new opportunities for tailored phase-matching at the micro-scale, beyond the coherence length of the bulk crystal. They can be adapted to achieve frequency conversion from the near-ultraviolet to the infrared ranges, they are low-cost and scalable to large surface areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا