ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband Mie-driven random quasi-phase-matching

130   0   0.0 ( 0 )
 نشر من قبل Romolo Savo Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-quality crystals without inversion symmetry are the conventional platform to achieve optical frequency conversion via three wave-mixing. In bulk crystals, efficient wave-mixing relies on phase-matching configurations, while at the micro- and nano-scale it requires resonant mechanisms that enhance the nonlinear light-matter interaction. These strategies commonly result in wavelength-specific performances and narrowband applications. Disordered photonic materials, made up of a random assembly of optical nonlinear crystals, enable a broadband tunability in the random quasi-phase-matching (RQPM) regime and do not require high-quality materials. Here, we combine resonances and disorder by implementing RQPM in Mie-resonant spheres of a few microns realized by the bottom-up assembly of barium titanate nano-crystals. The measured second harmonic generation (SHG) reveals a combination of broadband and resonant wave mixing, in which Mie resonances drive and enhance the SHG, while the disorder keeps the phase-matching conditions relaxed. This new phase-matching regime can be described by a random walk in the SHG complex plane whose step lengths depend on the local field enhancement within the micro-sphere. Our nano-crystals assemblies provide new opportunities for tailored phase-matching at the micro-scale, beyond the coherence length of the bulk crystal. They can be adapted to achieve frequency conversion from the near-ultraviolet to the infrared ranges, they are low-cost and scalable to large surface areas.



قيم البحث

اقرأ أيضاً

143 - M. Donaire 2009
This is the first of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce general expressions for the decay rate of spontaneous emitters and the power emission of induced dipoles embedded in homogenous dielectric media. We derive formulae which apply generically to virtual cavities and, in the continuum approximation, to small real cavities.
Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process, but currently the types of atoms used for quantum information processing and storage are limited by the narrow bandwidth of up-conversion available. Here we present the first experimental demonstration of broadband and high-efficiency quasi-phase matching second harmonic generation (SHG) in a chip-scale periodically poled lithium niobate thin film. We achieve large bandwidth of up to 2 THz for SHG by satisfying quasi-phase matching and group-velocity matching simultaneously. Furthermore, by changing film thickness, the central wavelength of quasi-phase matching SHG bandwidth can be modulated from 2.70 um to 1.44 um. The reconfigurable quasi-phase matching lithium niobate thin film provides a significant on-chip integrated platform for photonics and quantum optics.
110 - M. Donaire 2009
This is the second of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce a relation between the transverse decay rate of an e mitter in a virtual cavity and the complex refraction index of the host medium. We argue on the possibility of a criterion for inhibition/enhancement of spontaneous emission in function of the transition frequency and the correlation length of the host scatterers. In addition, we study the radiative/non-radiative nature of the net power emission through a microscopical analysis of the scattering events involved. This study reveals essential discrepancies with previous interpretations.
Hyperuniform disordered photonic materials (HDPM) are spatially correlated dielectric structures with unconventional optical properties. They can be transparent to long-wavelength radiation while at the same time have isotropic band gaps in another f requency range. This phenomenon raises fundamental questions concerning photon transport through disordered media. While optical transparency is robust against recurrent multiple scattering, little is known about other transport regimes like diffusive multiple scattering or Anderson localization. Here we investigate band gaps, and we report Anderson localization in two-dimensional stealthy HDPM using numerical simulations of the density of states and optical transport statistics. To establish a unified view, we propose a transport phase diagram. Our results show that, depending only on the degree of correlation, a dielectric material can transition from localization behavior to a bandgap crossing an intermediate regime dominated by tunneling between weakly coupled states.
The Anderson localization transition is one of the most well studied examples of a zero temperature quantum phase transition. On the other hand, many open questions remain about the phenomenology of disordered systems driven far out of equilibrium. H ere we study the localization transition in the prototypical three-dimensional, noninteracting Anderson model when the system is driven at its boundaries to induce a current carrying non-equilibrium steady state. Recently we showed that the diffusive phase of this model exhibits extensive mutual information of its non-equilibrium steady-state density matrix. We show that that this extensive scaling persists in the entanglement and at the localization critical point, before crossing over to a short-range (area-law) scaling in the localized phase. We introduce an entanglement witness for fermionic states that we name the mutual coherence, which, for fermionic Gaussian states, is also a lower bound on the mutual information. Through a combination of analytical arguments and numerics, we determine the finite-size scaling of the mutual coherence across the transition. These results further develop the notion of entanglement phase transitions in open systems, with direct implications for driven many-body localized systems, as well as experimental studies of driven-disordered systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا