ترغب بنشر مسار تعليمي؟ اضغط هنا

A computer-simulated Stern-Gerlach laboratory

99   0   0.0 ( 0 )
 نشر من قبل Daniel Schroeder
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an interactive computer program that simulates Stern-Gerlach measurements on spin-1/2 and spin-1 particles. The user can design and run experiments involving successive spin measurements, illustrating incompatible observables, interference, and time evolution. The program can be used by students at a variety of levels, from non-science majors in a general interest course to physics majors in an upper-level quantum mechanics course. We give suggested homework exercises using the program at various levels.

قيم البحث

اقرأ أيضاً

226 - C. Tschalaer 2013
The relativistic Lagrangian for a spinning particle in an electromagnetic field is derived from the known Lagrangian in the particles rest frame. The resulting relativistic Stern-Gerlach and Thomas precession forces on the particle are then derived f rom the Lagrangian in the laboratory frame. In particular, the longitudinal component of this combined Stern-Gerlach-Thomas force does not contain a term proportional to gamma-squared as was claimed in a previous derivation [1].
We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to cr eate a state-dependent force. In contrast to typical atom interferometers which make use of laser light for the splitting and recombination of the wave packets, this realization uses no light and can therefore serve as a high-precision surface probe at very close distances.
We design a Stern-Gerlach apparatus that separates quasispin components on the lattice, without the use of external fields. The effect is engineered using intrinsic parameters, such as hopping amplitudes and on-site potentials. A theoretical descript ion of the apparatus relying on a generalized Foldy-Wouthuysen transformation beyond Dirac points is given. Our results are verified numerically by means of wavepacket evolution, including an analysis of Zitterbewegung on the lattice. The necessary tools for microwave realizations, such as complex hopping amplitudes and chiral effects, are simulated.
We present a feasibility study with several magnetic field configurations for creating spin-dependent forces that can split a low-energy ion beam by the Stern-Gerlach effect. To the best of our knowledge, coherent spin-splittings of charged particles have yet to be realised. Our proposal is based on ion source parameters taken from a recent experiment that demonstrated single-ion implantation from a high-brightness ion source combined with a radio-frequency Paul trap. The inhomogeneous magnetic fields can be created by permanently magnetised microstructures or from current-carrying wires with sizes in the micron range, such as those recently used in a successful implementation of the Stern-Gerlach effect with neutral atoms. All relevant forces (Lorentz force and image charges) are taken into account, and measurable splittings are found by analytical and numerical calculations.
66 - Sandip Pakvasa 2018
The full story of the Stern-Gerlach experiment and its reception, interpretation and final understanding has many unexpected surprises. Here, we review the history and the context of the proposal, the experiment, and the subsequent story of the after math. We also discuss the story of the possible Stern-Gerlach experiment for free electrons etc. Finally, we comment on the remarkable career of Otto Stern.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا