ﻻ يوجد ملخص باللغة العربية
The relativistic Lagrangian for a spinning particle in an electromagnetic field is derived from the known Lagrangian in the particles rest frame. The resulting relativistic Stern-Gerlach and Thomas precession forces on the particle are then derived from the Lagrangian in the laboratory frame. In particular, the longitudinal component of this combined Stern-Gerlach-Thomas force does not contain a term proportional to gamma-squared as was claimed in a previous derivation [1].
The claim in ref.1 [M. Conte et al: Stern-Gerlach Force on a Precessing Magnetic Moment, Proceedings of PAC07 (http://cern.ch/AccelConf/p07/PAPER/THPAS105.pdf)] that the Stern-Gerlach force on a charged particle with a magnetic moment causes a change
We design a Stern-Gerlach apparatus that separates quasispin components on the lattice, without the use of external fields. The effect is engineered using intrinsic parameters, such as hopping amplitudes and on-site potentials. A theoretical descript
We describe an interactive computer program that simulates Stern-Gerlach measurements on spin-1/2 and spin-1 particles. The user can design and run experiments involving successive spin measurements, illustrating incompatible observables, interferenc
The full story of the Stern-Gerlach experiment and its reception, interpretation and final understanding has many unexpected surprises. Here, we review the history and the context of the proposal, the experiment, and the subsequent story of the after
We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to cr