ترغب بنشر مسار تعليمي؟ اضغط هنا

Global symmetries of Yang-Mills squared in various dimensions

148   0   0.0 ( 0 )
 نشر من قبل Leron Borsten
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensoring two on-shell super Yang-Mills multiplets in dimensions $Dleq 10$ yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) $mathbb{D}$ with each dimension $3leq Dleq 10$ we obtain formulae for the algebras $mathfrak{g}$ and $mathfrak{h}$ of the U-duality group $G$ and its maximal compact subgroup $H$, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.



قيم البحث

اقرأ أيضاً

121 - J. Wosiek 2003
We review the last year progress in understanding supersymmetric SU(2) Yang-Mills quantum mechanics in four and ten space-time dimensions. The four dimensional system is now well under control and the precise spectrum is obtained in all channels. In D=10 some new results are also available.
We consider `twin supergravities - pairs of supergravities with $mathcal{N}_+$ and $mathcal{N}_-$ supersymmetries, $mathcal{N}_+>mathcal{N}_-$, with identical bosonic sectors - in the context of tensoring super Yang-Mills multiplets. It is demonstrat ed that the pairs of twin supergravity theories are related through their left and right super Yang-Mills factors. This procedure generates new theories from old. In particular, the matter coupled $mathcal{N}_-$ twins in $D=3,5,6$ and the $mathcal{N}_-=1$ twins in $D=4$ have not, as far as we are aware, been obtained previously using the double-copy construction, adding to the growing list of double-copy constructible theories. The use of fundamental matter multiplets in the double-copy construction leads us to introduce a bi-fundamental scalar that couples to the well-known bi-adjoint scalar field. It is also shown that certain matter coupled supergravities admit more than one factorisation into left and right super Yang-Mills-matter theories.
Using simple symmetry arguments we classify the ungauged $D=4$, $mathcal{N}=2$ supergravity theories, coupled to both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the product of $mathcal{N}=2$ and $mathcal{N} =0$ matter-coupled Yang-Mills gauge theories. This includes all such supergravities with two isolated exceptions: pure supergravity and the $T^3$ model.
By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form ga uge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincare. As a concrete example we focus on the new-minimal (12+12) off-shell version of simple four-dimensional supergravity obtained by tensoring the off-shell Yang-Mills multiplets (4+4,N_L =1)and(3+0,N_R =0).
We investigate the structure of certain protected operator algebras that arise in three-dimensional N=4 superconformal field theories. We find that these algebras can be understood as a quantization of (either of) the half-BPS chiral ring(s). An impo rtant feature of this quantization is that it has a preferred basis in which the structure constants of the quantum algebra are equal to the OPE coefficients of the underlying superconformal theory. We identify several nontrivial conditions that the quantum algebra must satisfy in this basis. We consider examples of theories for which the moduli space of vacua is either the minimal nilpotent orbit of a simple Lie algebra or a Kleinian singularity. For minimal nilpotent orbits, the quantum algebras (and their preferred bases) can be uniquely determined. These algebras are related to higher spin algebras. For Kleinian singularities the algebras can be characterized abstractly - they are spherical subalgebras of symplectic reflection algebras - but the preferred basis is not easily determined. We find evidence in these examples that for a given choice of quantum algebra (defined up to a certain gauge equivalence), there is at most one choice of canonical basis. We conjecture that this is the case for general N=4 SCFTs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا