ترغب بنشر مسار تعليمي؟ اضغط هنا

Are all supergravity theories Yang-Mills squared?

84   0   0.0 ( 0 )
 نشر من قبل Silvia Nagy
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using simple symmetry arguments we classify the ungauged $D=4$, $mathcal{N}=2$ supergravity theories, coupled to both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the product of $mathcal{N}=2$ and $mathcal{N}=0$ matter-coupled Yang-Mills gauge theories. This includes all such supergravities with two isolated exceptions: pure supergravity and the $T^3$ model.



قيم البحث

اقرأ أيضاً

We consider `twin supergravities - pairs of supergravities with $mathcal{N}_+$ and $mathcal{N}_-$ supersymmetries, $mathcal{N}_+>mathcal{N}_-$, with identical bosonic sectors - in the context of tensoring super Yang-Mills multiplets. It is demonstrat ed that the pairs of twin supergravity theories are related through their left and right super Yang-Mills factors. This procedure generates new theories from old. In particular, the matter coupled $mathcal{N}_-$ twins in $D=3,5,6$ and the $mathcal{N}_-=1$ twins in $D=4$ have not, as far as we are aware, been obtained previously using the double-copy construction, adding to the growing list of double-copy constructible theories. The use of fundamental matter multiplets in the double-copy construction leads us to introduce a bi-fundamental scalar that couples to the well-known bi-adjoint scalar field. It is also shown that certain matter coupled supergravities admit more than one factorisation into left and right super Yang-Mills-matter theories.
154 - R. Jackiw 1997
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
We consider the partition function and correlation functions in the bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. In the supersymmetric case, we show that the partition function converges when $D=4,6$ and 1 0, and that correlation functions of degree $k< k_c=2(D-3)$ are convergent independently of the group. In the bosonic case we show that the partition function is convergent when $D geq D_c$, and that correlation functions of degree $k < k_c$ are convergent, and calculate $D_c$ and $k_c$ for each group, thus extending our previous results for SU(N). As a special case these results establish that the partition function and a set of correlation functions in the IKKT IIB string matrix model are convergent.
Tensoring two on-shell super Yang-Mills multiplets in dimensions $Dleq 10$ yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) $mathbb{D}$ with each dimension $3leq Dleq 10$ we obtain formulae for the algebras $mathfrak{g}$ and $mathfrak{h}$ of the U-duality group $G$ and its maximal compact subgroup $H$, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions. As their defining property, these theories admit the action of a global or local symmetry group t hat is (i) simple, and (ii) acts irreducibly on all the vector fields of the theory, including the ``graviphoton. Restricting ourselves to the theories that originate from five dimensions via dimensional reduction, we find that the generic Jordan family of MESGTs with the scalar manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four dimensions with the unifying global symmetry group SO(2,n). Of these theories only one can be gauged so as to obtain a unified YMESGT with the gauge group SO(2,1). Three of the four magical supergravity theories defined by simple Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions. Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family and the theories whose scalar manifolds are homogeneous but not symmetric do not lead to unified MESGTs in four dimensions. The three infinite families of unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras, whose scalar manifolds are non-homogeneous, do not lead directly to unified MESGTs in four dimensions under dimensional reduction. However, since their manifolds are non-homogeneous we are not able to completely rule out the existence of symplectic sections in which these theories become unified in four dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا