ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress in supersymmetric Yang-Mills quantum mechanics in various dimensions

122   0   0.0 ( 0 )
 نشر من قبل Jacek Wosiek
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف J. Wosiek




اسأل ChatGPT حول البحث

We review the last year progress in understanding supersymmetric SU(2) Yang-Mills quantum mechanics in four and ten space-time dimensions. The four dimensional system is now well under control and the precise spectrum is obtained in all channels. In D=10 some new results are also available.



قيم البحث

اقرأ أيضاً

Tensoring two on-shell super Yang-Mills multiplets in dimensions $Dleq 10$ yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) $mathbb{D}$ with each dimension $3leq Dleq 10$ we obtain formulae for the algebras $mathfrak{g}$ and $mathfrak{h}$ of the U-duality group $G$ and its maximal compact subgroup $H$, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.
The main aim of this paper is to study the scattering amplitudes in gauge field theories with maximal supersymmetry in dimensions D=6,8 and 10. We perform a systematic study of the leading ultraviolet divergences using the spinor helicity and on-shel l momentum superspace framework. In D=6 the first divergences start at 3 loops and we calculate them up to 5 loops, in D=8,10 the first divergences start at 1 loop and we calculate them up to 4 loops. The leading divergences in a given order are the polynomials of Mandelstam variables. To be on the safe side, we check our analytical calculations by numerical ones applying the alpha-representation and the dedicated routines. Then we derive an analog of the RG equations for the leading pole that allows us to get the recursive relations and construct the generating procedure to obtain the polynomials at any order of (perturbation theory) PT. At last, we make an attempt to sum the PT series and derive the differential equation for the infinite sum. This equation possesses a fixed point which might be stable or unstable depending on the kinematics. Some consequences of these fixed points are discussed.
195 - V.G. Kac 1999
We study the question of existence and the number of normalized vacuum states in N = 4 super-Yang-Mills quantum mechanics for any gauge group. The mass deformation method is the simplest and clearest one. It allowed us to calculate the number of norm alized vacuum states for all gauge groups. For all unitary groups, #(vac) = 1, but for the symplectic groups [starting from Sp(6) ], for the orthogonal groups [starting from SO(8)] and for all the exceptional groups, it is greater than one. We also discuss at length the functional integral method. We calculate the ``deficit term for some non-unitary groups and predict the value of the integral giving the ``principal contribution. The issues like the Born-Oppenheimer procedure to derive the effective theory and the manifestation of the localized vacua for the asymptotic effective wave functions are also discussed.
We test the recent claim that supersymmetric matrix quantum mechanics with mass deformation preserving maximal supersymmetry can be used to study N=4 super Yang-Mills theory on RxS^3 in the planar limit. When the mass parameter is large, we can integ rate out all the massive fluctuations around a particular classical solution, which corresponds to RxS^3. The resulting effective theory for the gauge field moduli at finite temperature is studied both analytically and numerically, and shown to reproduce the deconfinement phase transition in N=4 super Yang-Mills theory on RxS^3 at weak coupling. This transition was speculated to be a continuation of the conjectured phase transition at strong coupling, which corresponds to the Hawking-Page transition based on the gauge-gravity duality. By choosing a different classical solution of the same model, one can also reproduce results for gauge theories on other space-time such as RxS^3/Z_q and RxS^2. All these theories can be studied at strong coupling by the new simulation method, which was used successfully for supersymmetric matrix quantum mechanics without mass deformation.
Integral invariants in maximally supersymmetric Yang-Mills theories are discussed in spacetime dimensions $4leq Dleq 10$ for $SU(k)$ gauge groups. It is shown that, in addition to the action, there are three special invariants in all dimensions. Two of these, the single- and double-trace $F^4$ invariants, are of Chern-Simons type in $D=9,10$ and BPS type in $Dleq 8$, while the third, the double-trace of two derivatives acting on $F^4$, can be expressed in terms of a gauge-invariant super-$D$-form in all dimensions. We show that the super-ten-forms for $D=10$ $F^4$ invariants have interesting cohomological properties and we also discuss some features of other invariants, including the single-trace $d^2 F^4$, which has a special form in $D=10$. The implications of these results for ultra-violet divergences are discussed in the framework of algebraic renormalisation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا