ﻻ يوجد ملخص باللغة العربية
The unusually large NOAA active region 2192, observed in October 2014, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north-south oriented magnetic system of arcade fields served as a strong, also lateral, confinement for a series of large two-ribbon flares originating from the core of the active region. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this active region was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10^25 J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.
During late October 2014, active region NOAA 2192 caused an unusual high level of solar activity, within an otherwise weak solar cycle. While crossing the solar disk, during a period of 11 days, it was the source of 114 flares of GOES class C1.0 and
Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X
Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided in eruptive flares, when plasma is ejected from the solar atmosphere, resulting in a coronal mass ejection (CME), and confined flares when no
We compare the coronal magnetic energy and helicity of two solar active regions (ARs), prolific in major eruptive (AR~11158) and confined (AR~12192) flaring, and analyze the potential of deduced proxies to forecast upcoming flares. Based on nonlinear
Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law s