ﻻ يوجد ملخص باللغة العربية
Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided in eruptive flares, when plasma is ejected from the solar atmosphere, resulting in a coronal mass ejection (CME), and confined flares when no CME is associated with the flare. We present a case-study showing the evolution of key topological structures, such as spines and fans which may determine the eruptive versus non-eruptive behavior of the series of eruptive flares, followed by confined flares, which are all originating from the same site. To study the connectivity of the different flux domains and their evolution, we compute a potential magnetic field model of the active region. Quasi-separatrix layers are retrieved from the magnetic field extrapolation. The change of behavior of the flares from one day to the next -eruptive to confined- can be attributed to the change of orientation of the magnetic field below the fan with respect to the orientation of the overlaying spine, rather than an overall change in the stability of the large scale field. Flares tend to be more-and-more confined when the field that supports the filament and the overlying field gradually become less-and-less anti-parallel, as a direct result of changes in the photospheric flux distribution, being themselves driven by continuous shearing motions of the different magnetic flux concentrations.
The unusually large NOAA active region 2192, observed in October 2014, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north-south oriented magnetic system of arcade fie
We compare the coronal magnetic energy and helicity of two solar active regions (ARs), prolific in major eruptive (AR~11158) and confined (AR~12192) flaring, and analyze the potential of deduced proxies to forecast upcoming flares. Based on nonlinear
With the aim of understanding how the magnetic properties of active regions (ARs) control the eruptive character of solar flares, we analyze 719 flares of Geostationary Operational Environmental Satellite (GOES) class $geq$C5.0 during 2010$-$2019. We
During late October 2014, active region NOAA 2192 caused an unusual high level of solar activity, within an otherwise weak solar cycle. While crossing the solar disk, during a period of 11 days, it was the source of 114 flares of GOES class C1.0 and
We study the energy release process of a set of 51 flares (32 confined, 19 eruptive) ranging from GOES class B3 to X17. We use H$alpha$ filtergrams from Kanzelhohe Observatory together with SDO HMI and SOHO MDI magnetograms to derive magnetic reconne