ﻻ يوجد ملخص باللغة العربية
We propose to use diatomic molecular ions to search for strongly enhanced effects of variation of fundamental constants. The relative enhancement occurs in transitions between nearly degenerate levels of different nature. Since the trapping techniques for molecular ions have already been developed, the molecules HBr$^+$, HI$^+$, Br$^+_2$, I$^+_2$, IBr$^+$, ICl$^+$, and IF$^+$ are very promising candidates for such future studies.
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all
The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H + 2 and HD + for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for metrology of nucle
The formation of a strange or hybrid star from a neutron star progenitor is believed to occur when the central stellar density exceeds a critical value. If the transition from hadron to quark matter is of first order, the event has to release a huge
Precise experimental setups for detection of variation of fundamental constants, scalar dark matter, or gravitational waves, such as laser interferometers, optical cavities and resonant-mass detectors, are directly linked to measuring changes in mate
We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine structure constant and Newtons constant) within the context of the so-called running vacuum